Skip to main content
Log in

Optimizing Photovoltaic Performance in CZTS-Based Zn(1−x)SnxO (x = 0.100, 0.133, 0.167, 0.200 and 0.233) Thin Film Solar Cells: A Structural, Morphological and Optical Study

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Recently, the trend in solar cell research has become highly competitive, with researchers striving to find the best material that strikes a balance between various factors, including fabrication speed, cost, material toxicity, abundance, and overall photovoltaic performance. Typically, cadmium sulfide serves as the buffer layer in CZTS solar cells, but this material is known for its high toxicity. On the other hand, zinc tin oxide (ZTO) has gained popularity in solar cell applications due to its transparency, conductivity, thermal stability, and non-toxic nature. Consequently, the idea of using ZTO as an alternative buffer layer in CZTS solar cells has emerged. In this study, we synthesized nanocomposite thin films of Zn(1−x)SnxO (x = 0.100, 0.133, 0.167, 0.200, and 0.233% w/w) using the sol–gel method and spin coating technique. Among the various concentrations tested, the thin film composed of Zn0.833Sn0.167O demonstrated the highest power conversion efficiency (PCE) of 0.54%. This outcome marked a successful result, indicating that this particular composition optimizes efficiency in our study. It is noteworthy that excessive tin doping did not lead to improved efficiency. However, it is important to acknowledge that the PCE in our experiment is relatively low compared to that of other researchers due to the use of ITO glass as the back contact, chosen for economic considerations. Furthermore, our fabrication method for ZTO thin films resulted in a bandgap energy (Eg) value of 0.78 eV. In summary, our findings suggest that ZTO has the potential to replace cadmium sulfide as the buffer layer in CZTS-based solar cells. These findings are expected to have a significant impact on promoting ZTO as the primary buffer material in CZTS solar cell technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Höök, M.; Tang, X.: Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52, 797–809 (2013)

    Google Scholar 

  2. Huang, Y., et al.: Global organic carbon emissions from primary sources from 1960 to 2009. Atmos. Environ. 122, 505–512 (2015)

    Google Scholar 

  3. Alamri, S.N.: Effect of working pressure on the composition of a Cu2ZnSnS4 thin film deposited by RF sputtering of a single target. Arab. J. Sci. Eng. 48(1), 763–770 (2023)

    Google Scholar 

  4. Andreani, L.C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L.: Silicon solar cells: toward the efficiency limits. Adv. Phys. X 4(1), 1548305 (2019)

    Google Scholar 

  5. Ehrler, B.; Alarcón-Lladó, E.; Tabernig, S.W.; Veeken, T.; Garnett, E.C.; Polman, A.: Photovoltaics reaching for the Shockley–Queisser limit. ACS Energy Lett. 5(9), 3029–3033 (2020)

    Google Scholar 

  6. Pal, K.; Singh, P.; Bhaduri, A.; Thapa, K.B.: Current challenges and future prospects for a highly efficient (> 20%) kesterite CZTS solar cell: a review. Sol. Energy Mater. Sol. Cells 196, 138–156 (2019)

    Google Scholar 

  7. Jhuma, F.A.; Shaily, M.Z.; Rashid, M.J.: Towards high-efficiency CZTS solar cell through buffer layer optimization. Mater. Renew. Sustain. Energy 8(1), 6 (2019)

    Google Scholar 

  8. Prabeesh, P.; Sajeesh, V.G.; Packia Selvam, I.; Divya Bharati, M.S.; Mohan Rao, G.; Potty, S.N.: CZTS solar cell with non-toxic buffer layer: a study on the sulphurization temperature and absorber layer thickness. Sol. Energy 207, 419–427 (2020)

    Google Scholar 

  9. Şahin, Ç.; Diker, H.; Sygkridou, D.; Varlikli, C.; Stathatos, E.: Enhancing the efficiency of mixed halide mesoporous perovskite solar cells by introducing amine modified graphene oxide buffer layer. Renew. Energy 146, 1659–1666 (2020)

    Google Scholar 

  10. Alipanahpour Dil, E.; Ghaedi, M.; Asfaram, A.; Mehrabi, F.; Bazrafshan, A.A.; Tayebi, L.: Synthesis and application of Ce-doped TiO2 nanoparticles loaded on activated carbon for ultrasound-assisted adsorption of Basic Red 46 dye. Ultrason. Sonochem. 58, 104702 (2019)

    Google Scholar 

  11. Ericson, T., et al.: Zinc-tin-oxide buffer layer and low temperature post annealing resulting in a 90% efficient Cd-free Cu2ZnSnS4 solar cell. Solar RRL 1(5), 1700001 (2017). https://doi.org/10.1002/solr.201700001

    Article  Google Scholar 

  12. Maharana, B.; Jha, R.; Chatterjee, S.J.O.M.: Metal oxides as buffer layers for CZTS based solar cells: a numerical analysis by SCAPS-1D software. Opt. Mater. 131, 112734 (2022)

    Google Scholar 

  13. Koné, K.E.; Bouich, A.; Soucase, B.M.; Soro, D.: Manufacture of different oxides with high uniformity for copper zinc tin sulfide (CZTS) based solar cells. J. Mol. Graph. Model. 121, 108448 (2023)

    Google Scholar 

  14. Ahmed, M.I.; Hussain, Z.; Khalid, A.; Habib, A.: Solution-processed ZnO-based low-cost CH3NH3 PbI3 solar cells by ambient air, hole transport layer-free synthesis. Arab. J. Sci. Eng. 42(10), 4317–4325 (2017)

    Google Scholar 

  15. Baik, D.G.; Cho, S.M.: Application of sol-gel derived films for ZnO/n-Si junction solar cells. Thin Solid Films 354(1), 227–231 (1999)

    Google Scholar 

  16. Rehman, U., et al.: Direct growth of ZnSnO nano-wires by thermal evaporation technique for thermoelectric applications. Physica B 570, 232–235 (2019)

    Google Scholar 

  17. Seo, S.-J.; Hwang, Y.H.; Bae, B.-S.: Postannealing process for low temperature processed Sol-Gel zinc tin oxide thin film transistors. Electrochem. Solid-State Lett. 13(10), H357 (2010)

    Google Scholar 

  18. Singh, D.; Kundu, V.S.; Maan, A.S.: Structural, morphological and gas sensing study of zinc doped tin oxide nanoparticles synthesized via hydrothermal technique. J. Mol. Struct. 1115, 250–257 (2016)

    Google Scholar 

  19. Kayani, Z.N.; Saleemi, F.; Batool, I.: Effect of calcination temperature on the properties of ZnO nanoparticles. Appl. Phys. A 119(2), 713–720 (2015)

    Google Scholar 

  20. Hee Choi, M.; Young Ma, T.: Effects of vapor-annealed gate dielectric on the properties of zinc tin oxide transparent thin film transistors. Mater. Sci. Semicond. Process. 16(2), 369–373 (2013)

    Google Scholar 

  21. Mehrabi, F.; Ghaedi, M.; Alipanahpour Dil, E.: Magnetic nanofluid based on hydrophobic deep eutectic solvent for efficient and rapid enrichment and subsequent determination of cinnamic acid in juice samples: Vortex-assisted liquid-phase microextraction. Talanta 260, 124581 (2023)

    Google Scholar 

  22. Mehrabi, F.; Ghaedi, M.; Alipanahpour Dil, E.: dl-carnitine-based green hydrophobic deep eutectic solvent for the enrichment of bisphenol A in mineral water based on ultrasound-assisted liquid-phase microextraction. Talanta 266, 125045 (2024)

    Google Scholar 

  23. Mehrabi, F.; Ghaedi, M.: Magnetic nanofluid based on green deep eutectic solvent for enrichment and determination of chloramphenicol in milk and chicken samples by high-performance liquid chromatography-ultraviolet: optimization of microextraction. J. Chromatogr. A 1689, 463705 (2023)

    Google Scholar 

  24. Tai, M., et al.: Ultrathin Zn2SnO4 (ZTO) passivated ZnO nanocone arrays for efficient and stable perovskite solar cells. Chem. Eng. J. 361, 60–66 (2019)

    Google Scholar 

  25. Yu, S.; Xu, W.; Zhu, H.; Qiu, W.; Fu, Q.; Kong, L.: Effect of sputtering power on structure and properties of ZTO films. J. Alloys Compd. 883, 160622 (2021)

    Google Scholar 

  26. Li, X.; Su, Z.; Venkataraj, S.; Batabyal, S.K.; Wong, L.H.: 8.6% Efficiency CZTSSe solar cell with atomic layer deposited Zn-Sn-O buffer layer. Sol. Energy Mater. Sol. Cells 157, 101–107 (2016)

    Google Scholar 

  27. Zilberberg, K.; Riedl, T.: Metal-nanostructures—a modern and powerful platform to create transparent electrodes for thin-film photovoltaics. J. Mater. Chem. A 4, 14481–14508 (2016)

    Google Scholar 

  28. Tsai, M.-Y.; Cheng, W.-H.; Jeng, J.-S.; Chen, J.-S.: Improving performance of inverted organic solar cells using ZTO nanoparticles as cathode buffer layer. Solid-State Electron. 120, 56–62 (2016)

    Google Scholar 

  29. Zaware, R.V.; Wagh, B.G.: The influence of precursor ratio on structure, morphology and resistivity of thin ZnS films sprayed by improved method. Arab. J. Sci. Eng. 40(7), 2049–2057 (2015)

    Google Scholar 

  30. Oo, T.Z., et al.: Zinc Tin Oxide (ZTO) electron transporting buffer layer in inverted organic solar cell. Org. Electron. 13(5), 870–874 (2012)

    Google Scholar 

  31. Alipanahpour Dil, E.; Ghaedi, M.; Asfaram, A.; Mehrabi, F.; Sadeghfar, F.: Efficient adsorption of Azure B onto CNTs/Zn:ZnO@Ni2P-NCs from aqueous solution in the presence of ultrasound wave based on multivariate optimization. J. Ind. Eng. Chem. 74, 55–62 (2019)

    Google Scholar 

  32. Prawira, Y.Y., et al.: All-solution-non-vacuum fabrication process of CZTS solar cell using ZTO as non-toxic buffer layer. J. Nanoelectron. Optoelectron. 58, 1–8 (2020)

    Google Scholar 

  33. Pope, C.G.: X-ray diffraction and the Bragg equation. J. Chem. Educ. 74(1), 129 (1997)

    Google Scholar 

  34. Jan, T.; Iqbal, J.; Ismail, M.; Zakaullah, M.; Naqvi, M.S.H.; Badshah, N.: Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria. Int. J. Nanomed. 8, 3679–3687 (2013)

    Google Scholar 

  35. Kraemer, D.; Hu, L.; Muto, A.; Chen, X.; Chen, G.; Chiesa, M.: Photovoltaic-thermoelectric hybrid systems: a general optimization methodology. Appl. Phys. Lett. 92(24), 5687 (2008)

    Google Scholar 

  36. Abu-Zahra, N.; Algazzar, E.: Effect of crystallinity on the performance of P3HT/PC70BM/n-dodecylthiol polymer solar cells. J. Solar Energy Eng. 136(2), 021203 (2014)

    Google Scholar 

  37. Gnenna, E.; Khemiri, N.; Mounir, K.: Development and characterization of (Zn, Sn)O thin films for photovoltaic application as buffer layers. SN Appl. Sci. 2, 1–9 (2020)

    Google Scholar 

  38. Mihaiu, S.; Atkinson, I.; Anastasescu, M.; Toader, A.; Voicescu, M.; Zaharescu, M.: Spectroscopic investigations of the formation of the Zn-Sn-O nanostructured films. Rev. Roum. Chim. 57, 477–490 (2012)

    Google Scholar 

  39. Park, S.K.; Kim, Y.-H.; Kim, H.-S.; Han, J.-I.J.E.; Letters, S.-S.: High performance solution-processed and lithographically patterned zinc–tin oxide thin-film transistors with good operational stability. Electrochem. Solid-State Lett. 12(7), 256 (2009)

    Google Scholar 

  40. Habibi, M.H.; Mardani, M.; Habibi, M.; Zendehdel, E.: Enhanced photovoltage (Voc) of nano-structured zinc tin oxide (ZTO) working electrode prepared by a green hydrothermal route for dye-sensitized solar cell (DSSC). J. Mater. Sci. Mater. Eletron. 28, 3789–3795 (2017)

    Google Scholar 

  41. Lee, Y.S., et al.: Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy Environ. Sci. 6, 2112–2118 (2013)

    Google Scholar 

  42. Seo, S.-J.; Choi, C.; Hwang, Y.H.; Bae, B.-S.: High performance solution-processed amorphous zinc tin oxide thin film transistor. J. Phys. D Appl. Phys. 42, 35106–35115 (2009)

    Google Scholar 

  43. Dutta, S.; Dodabalapur, A.J.S.; Chemical, A.B.: Zinc tin oxide thin film transistor sensor. Sens. Actuators B Chem. 143(1), 50–55 (2009)

    Google Scholar 

  44. Bu, I.Y.-Y.: Sol–gel synthesis of novel cobalt doped zinc tin oxide composite for photocatalytic application. Ceram. Int. 40(6), 8103–8109 (2014)

    Google Scholar 

  45. Shi, J.-B., et al.: Synthesis and characterization of single-crystalline zinc tin oxide nanowires. Nanoscale Res. Lett. 9, 1–6 (2014)

    Google Scholar 

  46. Ge, J.; Chu, J.; Jiang, J.; Yan, Y.; Yang, P.: Characteristics of In-substituted CZTS thin film and bifacial solar cell. ACS Appl. Mater. Interfaces 6(23), 21118–21130 (2014)

    Google Scholar 

  47. Mohammad Naim, N.; Abdullah, H.; Umar, A.A.; Abdul Hamid, A.; Shaari, S.: Thermal annealing effect on structural, morphological, and sensor performance of PANI-Ag-Fe based electrochemical E. coli sensor for environmental monitoring. Sci. World J. 2015, 696521 (2015) (in English)

    Google Scholar 

  48. Abdullah, H.; Omar, A.; Yarmo, M.A.; Shaari, S.; Taha, M.R.: Structural and morphological studies of zinc oxide incorporating single-walled carbon nanotubes as a nanocomposite thin film. J. Mater. Sci. Mater. Electron. 24(9), 3603–3610 (2013)

    Google Scholar 

  49. Mazzer, M., et al.: Bifacial CIGS solar cells grown by low temperature pulsed electron deposition. Sol. Energy Mater. Sol. Cells 166, 247–253 (2017)

    Google Scholar 

  50. Schneider, T.; Dethloff, C.; Hölscher, T.; Kempa, H.; Scheer, R.: Comparison of Mo and ITO back contacts in CIGSe solar cells: vanishing of the main capacitance step. Prog. Photovolt. Res. Appl. 30(2), 191–202 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was fully supported by the MOHE grant, project Nos. FRGS/1/2019/STG07/UKM/02/11, and DIP-2021-013. All experimental work has been done at the Photonic Technology Laboratory, Department of Electrical, Electronics, and Systems Engineering, UKM. The authors would like to thank Universiti Kebangsaan Malaysia for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huda Abdullah.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, K.J., Abdullah, H., Naim, N.M. et al. Optimizing Photovoltaic Performance in CZTS-Based Zn(1−x)SnxO (x = 0.100, 0.133, 0.167, 0.200 and 0.233) Thin Film Solar Cells: A Structural, Morphological and Optical Study. Arab J Sci Eng 49, 6743–6760 (2024). https://doi.org/10.1007/s13369-023-08456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08456-7

Keywords

Navigation