Skip to main content

Advertisement

Log in

Optimization: a proposed pathway to overcome the impasse of low efficiency in CZTS thin-film photovoltaics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The quest to improve the performance of copper zinc tin sulfide (CZTS) thin-film photovoltaics has been increasing recently. This pursuit is driven by the optimal direct bandgap, non-toxic, and abundant constituent elements of CZTS. In this work, a novel CZTS thin-film solar cell with FTO/AZO/CdS/CZTS/MoS2/Mo device structure has been numerically modeled and simulated with SCAPS-1D software. This modeled structure was achieved from a combination of different optimization processes, which involves the window layer, absorber layer, and the back interface of the device. Simulation of this device gave a promising optimized result with a conversion efficiency of 26.19%, a fill factor of 62.07%, a short-circuit current of 27.56 mA cm−2, and an open-circuit voltage of 0.94 V. Further studies from the Mott–Schottky slope showed that the average carrier concentration obtained from the CV calculations is ~ 5.2 × 1016 cm−3. The simulation processes provide an essential guideline for the fabrication of highly efficient CZTS thin-film solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Ramasamy, M.A. Malik, P. O'Brien, Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. Chem. Commun. 48, 5703–5714 (2012)

    Article  CAS  Google Scholar 

  2. J. Jean, P.R. Brown, R.L. Jaffe, T. Buonassisi, V. Bulović, Pathways for solar photovoltaics. Energy Environ. Sci. 8, 1200–1219 (2015)

    Article  CAS  Google Scholar 

  3. A.D. Adewoyin, M.A. Olopade, O.O. Oyebola, M.A. Chendo, Development of CZTGS/CZTS tandem thin film solar cell using SCAPS-1D. Optik 176, 132–142 (2019)

    Article  CAS  Google Scholar 

  4. Y.M. Hunge, M.A. Mahadik, V.L. Patil, A.R. Pawar, S.R. Gadakh, A.V. Moholkar, P.S. Patil, C.H. Bhosale, Visible light assisted photoelectrocatalytic degradation of sugarcane factory wastewater by sprayed CZTS thin films. J. Phys. Chem. Solids 111, 176–181 (2017)

    Article  CAS  Google Scholar 

  5. Y.M. Hunge, A.A. Yadav, S. Liu, V.L. Mathe, Sonochemical synthesis of CZTS photocatalyst for photocatalytic degradation of phthalic acid. Ultrason. Sonochem. 56, 284–289 (2019)

    Article  CAS  Google Scholar 

  6. X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D.B. Mitzi, M. Green, The current status and future prospects of kesterite solar cells: a brief review. Prog. Photovolt. Res. Appl. 24(6), 879–898 (2016)

    Article  Google Scholar 

  7. M. Ravindiran, C. Praveenkumar, Status review and the future prospects of CZTS based solar cell: a novel approach on the device structure and material modeling for CZTS based photovoltaic device. Renew. Sustain. Energy Rev. 94, 317–329 (2018)

    Article  CAS  Google Scholar 

  8. M. Courel, O. Vigil-Galán, Different approaches for thin film solar cell simulation, in Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications, ed. by J. Zhang, Y.-G. Jung (Springer, Cham, 2018)

    Google Scholar 

  9. M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W. Ho-Baillie, Solar cell efficiency tables (version 54). Progress in Photovoltaics: Research and Applications, 27 (NREL/JA-5K00-74116) (2019)

  10. M.F. Rahman, J. Hossain, A. Kuddus, S. Tabassum, M.H. Rubel, M.M. Rahman, Y. Moriya, H. Shirai, A.B.M. Ismail, A novel CdTe ink-assisted direct synthesis of CdTe thin films for the solution-processed CdTe solar cells. J. Mater. Sci. 1, 1–16 (2020)

    Google Scholar 

  11. S.K. Wallace, D.B. Mitzi, A. Walsh, The steady rise of kesterite solar cells. ACS Energy Lett. 2(4), 776–779 (2017)

    Article  CAS  Google Scholar 

  12. A. Haddout, A. Raidou, M. Fahoume, A review on the numerical modeling of CdS/CZTS-based solar cells. Appl. Phys. A 125(2), 124 (2019)

    Article  Google Scholar 

  13. M. Zanuccoli, Advanced Numerical Simulation of Silicon-Based Solar Cells (Doctoral dissertation, alma) (2012)

  14. C.W. Gwyn, D.L. Scharfetter, J.L. Wirth, The analysis of radiation effects in semiconductor junction devices. IEEE Trans. Nucl. Sci. 14(6), 153–169 (1967)

    Article  Google Scholar 

  15. J.G. Fossum, Computer-aided numerical analysis of silicon solar cells. Solid-State Electron. 19(4), 269–277 (1976)

    Article  CAS  Google Scholar 

  16. P.P. Altermatt, Models for numerical device simulations of crystalline silicon solar cells: a review. J. Comput. Electron. 10(3), 314 (2011)

    Article  Google Scholar 

  17. D.T. Rover, P.A. Basore, G.M. Thorson, Solar cell modeling on personal computers. In: IEEE photovoltaic specialists conference. 18 (pp. 703–709) (1985)

  18. P.A. Basore, Numerical modeling of textured silicon solar cells using PC-1D. IEEE Trans. Electron Devices 37(2), 337–343 (1990)

    Article  CAS  Google Scholar 

  19. A. Froitzheim, R. Stangl, L. Elstner, M. Kriegel, W. Fuhs, AFORS-HET: a computer-program for the simulation of heterojunction solar cells to be distributed for public use. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003 (Vol. 1, pp. 279–282). IEEE (2003)

  20. A. Ingenito, O. Isabella, M. Zeman, Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells. Prog. Photovolt. Res. Appl. 23(11), 1649–1659 (2015)

    Article  CAS  Google Scholar 

  21. R.J. Schwartz, J.L. Gray, Y.J. Lee, Design considerations for thin film CuInSe/sub 2/, and other polycrystalline heterojunction solar cells. In: The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference-1991 (pp. 920–923). IEEE (1991)

  22. M. Asaduzzaman, M. Hasan, A.N. Bahar, An investigation into the effects of band gap and doping concentration on Cu(In, Ga)Se2 solar cell efficiency. Springer Plus 5(1), 578 (2016)

    Article  Google Scholar 

  23. S. Fonash, J. Arch, J. Cuiffi, J. Hou, W. Howland, P. McElheny, A. Moquin, M. Rogosky, T. Tran, H. Zhu, F. Rubinelli, A Manual for AMPS-1D for Windows 95. NT a One-Dimensional Device Simulation Program for the Analysis of Microelectronic and Photonic Structures (1997)

  24. S. Degrave, M. Burgelman, P. Nollet, Modeling of polycrystalline thin film solar cells: new features in SCAPS version 2.3. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003 (Vol. 1, pp. 487–490). IEEE (2003)

  25. C. Platzer-Björkman, N. Barreau, M. Bär, L. Choubrac, L. Grenet, J. Heo, T. Kubart, A. Mittiga, Y. Sanchez, J. Scragg, S. Sinha, Back and front contacts in kesterite solar cells: state-of-the-art and open questions. J. Phys. Energy 1(4), 044005 (2019)

    Article  Google Scholar 

  26. K. Ito (Ed.), Copper zinc tin sulfide-based thin-film solar cells. (Wiley, Chichester, 2014)

  27. R.H. Bube, Photovoltaic Materials, Series on Properties of Semiconductor Materials (Imperial College Press, London, 1998)

    Book  Google Scholar 

  28. E. Fortunato, D. Ginley, H. Hosono, D.C. Paine, Transparent conducting oxides for photovoltaics. MRS Bull. 32(3), 242–247 (2007)

    Article  CAS  Google Scholar 

  29. A.D. Adewoyin, M.A. Olopade, M.A.C. Chendo, A comparative study of the effect of transparent conducting oxides on the performance of Cu2ZnSnS4 thin film solar cell. J. Comput. Electron. 17(1), 361–372 (2018)

    Article  CAS  Google Scholar 

  30. E. Fortunato, P. Nunes, A. Marques, D. Costa, H. Águas, I. Ferreira, M.E.V. Costa, M.H. Godinho, P.L. Almeida, J.P. Borges, R. Martins, Transparent, conductive ZnO: Al thin film deposited on polymer substrates by RF magnetron sputtering. Surf. Coat. Technol. 151, 247–251 (2002)

    Article  Google Scholar 

  31. A. Lyubchyk, A. Vicente, B. Soule, P.U. Alves, T. Mateus, M.J. Mendes, H. Águas, E. Fortunato, R. Martins, Mapping the electrical properties of ZnO-based transparent conductive oxides grown at room temperature and improved by controlled postdeposition annealing. Adv. Electron. Mater. 2(1), 1500287 (2016)

    Article  Google Scholar 

  32. W. Xinkun, L. Wei, C. Shuying, L. Yunfeng, J. Hongjie, Photoelectric properties of Cu2ZnSnS4 thin films deposited by thermal evaporation. J. Semicond. 33(2), 022002 (2012)

    Article  Google Scholar 

  33. H. Katagiri, K. Jimbo, Development of rare metal-free CZTS-based thin film solar cells. In Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE (pp. 003516–003521). IEEE (2011)

  34. A.D. Adewoyin, M.A. Olopade, M. Chendo, Prediction and optimization of the performance characteristics of CZTS thin film solar cell using band gap grading. Opt. Quant. Electron. 49(10), 336 (2017)

    Article  Google Scholar 

  35. A.D. Adewoyin, M.A. Olopade, M. Chendo, Enhancement of the conversion efficiency of Cu2ZnSnS4 thin film solar cell through the optimization of some device parameters. Optik 133, 122–131 (2017)

    Article  CAS  Google Scholar 

  36. M. Burgelman, K. Decock, A. Niemegeers, J. Verschraegen, S. Degrave, SCAPS manual (2016)

  37. S.R. Meher, L. Balakrishnan, Z.C. Alex, Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: a numerical simulation approach. Superlattices Microstruct. 100, 703–722 (2016)

    Article  CAS  Google Scholar 

  38. N. Muhunthan, O.P. Singh, M.K. Thakur, P. Karthikeyan, D. Singh, M. Saravanan, V.N. Singh, Interfacial properties of CZTS thin film solar cell. J. Solar Energy 2014, 1–2 (2014)

    Article  Google Scholar 

  39. M. Patel, A. Ray, Enhancement of output performance of Cu2ZnSnS4 thin film solar cells: a numerical simulation approach and comparison to experiments. Phys. B 407(21), 4391–4397 (2012)

    Article  CAS  Google Scholar 

  40. K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, Thermally evaporated Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 97, 143508 (2012)

    Article  Google Scholar 

  41. M. Gloeckler, A.L. Fahrenbruch, J.R. Sites, Numerical modeling of CIGS and CdTe solar cells: setting the baseline. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion. a-c 491–494 (2003)

  42. M. Djinkwi Wanda, S. Ouédraogo, F. Tchoffo, F. Zougmoré, J.M.B. Ndjaka, Numerical investigations and analysis of Cu2ZnSnS4 based solar cells by SCAPS-1D. Intl. J. Photoenergy 2016, 1–9 (2016)

    Article  Google Scholar 

  43. Y.H. Khattak, F. Baig, S. Ullah, B. Marí, S. Beg, H. Ullah, Enhancement of the conversion efficiency of thin film kesterite solar cell. J. Renew. Sustain. Energy 10(3), 033501 (2018)

    Article  Google Scholar 

  44. S.M. Sze, K.K. Ng, Physics of semiconductor devices (Wiley, Chichester, 2006)

    Book  Google Scholar 

  45. F.M.T. Enam, K.S. Rahman, M.I. Kamaruzzaman, K. Sobayel, P. Chelvanathan, B. Bais, M. Akhtaruzzamanb, A.R.M. Alamoud, N. Amin, Design prospects of cadmium telluride/silicon (CdTe/Si) tandem solar cells from numerical simulation. Optik 139, 397–406 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the provision of SCAPS-1D software by Prof. Marc Burgelman and his research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeyinka D. Adewoyin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adewoyin, A.D., Olopade, M.A., Oyebola, O.O. et al. Optimization: a proposed pathway to overcome the impasse of low efficiency in CZTS thin-film photovoltaics. J Mater Sci: Mater Electron 31, 17585–17593 (2020). https://doi.org/10.1007/s10854-020-04314-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04314-6

Navigation