Skip to main content
Log in

Vehicle Classification Using Deep Learning-Assisted Triboelectric Sensor

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Development of a reliable and intelligent traffic monitoring system is highly desired to improve the transportation safety and establish future transportation plans due to the fast growth of vehicle population. Vehicle classification is one of the most critical subsystems where existing ones suffer from privacy concerns, requirements of complicated systems, and high maintenance cost. This paper reports a novel vehicle classification method by utilizing a triboelectric sensor to accurately identify vehicles. Novelty of this method originates from using triboelectric sensor and machine learning method with important advantages over current alternatives by providing an easy installation, simple operation, noninvasive measurement, cost-effective manufacturing, and highly accurate classification. To make a classification, vehicle toys’ signals were acquired from triboelectric sensor and then applied to a deep learning algorithm. The 1932 sensor output data were grouped into a set of seven vehicle toys with different wheelbases, and number of tires passing on are used to train and optimize 1D-CNN model. The utilized 1D-CNN model achieved accuracy, f1-score, precision, and recall as 96.38%, 0.9638, 0.9658, and 0.9637, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Won, M.: Intelligent traffic monitoring systems for vehicle classification: a survey. IEEE Access 8, 73340–73358 (2020). https://doi.org/10.1109/ACCESS.2020.2987634

    Article  Google Scholar 

  2. Pang, Y.; Zhu, X.; Yu, Y.; Liu, S.; Chen, Y.; Feng, Y.: Waterbomb-origami inspired triboelectric nanogenerator for smart pavement-integrated traffic monitoring. Nano Res. 15, 5450–5460 (2022). https://doi.org/10.1007/s12274-022-4152-6

    Article  Google Scholar 

  3. Abu-Abed, F.; Ivanov, A.: Application of computer modeling software for mining vehicle fleet telemetry monitoring. Acta Montanistica Slovaca (2021). https://doi.org/10.46544/AMS.v26i4.01

    Article  Google Scholar 

  4. Kaur, R.; Roul, R.K.; Batra, S.: An efficient approach for accident severity classification in smart transportation system. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-07274-7

    Article  Google Scholar 

  5. Gholamhosseinian, A.; Seitz, J.: Vehicle classification in intelligent transport systems: an overview, methods and software perspective. IEEE Open J. Intell. Transport. Syst. 2, 173–194 (2021). https://doi.org/10.1109/OJITS.2021.3096756

    Article  Google Scholar 

  6. Meta, S.; Cinsdikici, M.G.: Vehicle-classification algorithm based on component analysis for single-loop inductive detector. IEEE Transact. Veh. Technol. 59(6), 2795–2805 (2010). https://doi.org/10.1109/TVT.2010.2049756

    Article  Google Scholar 

  7. Ki, Y.-K.; Baik, D.-K.: Vehicle-classification algorithm for single-loop detectors using neural networks. IEEE Transact. Veh. Technol. 55(6), 1704–1711 (2006). https://doi.org/10.1109/TVT.2006.883726

    Article  Google Scholar 

  8. Wu, L.; Coifman, B.: Improved vehicle classification from dual-loop detectors in congested traffic. Transport. Res. Part C Emerg. Technol. 46, 222–234 (2014). https://doi.org/10.1016/j.trc.2014.04.015

    Article  Google Scholar 

  9. Li, H.; Dong, H.; Jia, L.; Ren, M.: Vehicle classification with single multi-functional magnetic sensor and optimal mns-based cart. Measurement 55, 142–152 (2014)

    Article  Google Scholar 

  10. Dong, H.; Wang, X.; Zhang, C.; He, R.; Jia, L.; Qin, Y.: Improved robust vehicle detection and identification based on single magnetic sensor. IEEE Access 6, 5247–5255 (2018). https://doi.org/10.1109/ACCESS.2018.2791446

    Article  Google Scholar 

  11. Urazghildiiev, I.; Ragnarsson, R.; Ridderstrom, P.; Rydberg, A.; Ojefors, E.; Wallin, K.; Enochsson, P.; Ericson, M.; Lofqvist, G.: Vehicle classification based on the radar measurement of height profiles. IEEE Transact. Intell. Transport. Syst. 8(2), 245–253 (2007). https://doi.org/10.1109/TITS.2006.890071

    Article  Google Scholar 

  12. Mei, X.; Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Transact. Pattern Anal. Mach. Intell. 33(11), 2259–2272 (2011). https://doi.org/10.1109/TPAMI.2011.66

    Article  Google Scholar 

  13. Rajab, S.; Al Kalaa, M.O.; Refai, H.: Classification and speed estimation of vehicles via tire detection using single-element piezoelectric sensor. J. Adv. Transport. 50(7), 1366–1385 (2016). https://doi.org/10.1002/atr.1406

    Article  Google Scholar 

  14. González, B.; Jiménez, F.J.; De Frutos, J.: A virtual instrument for road vehicle classification based on piezoelectric transducers. Sensors 20(16), 4597 (2020). https://doi.org/10.3390/s20164597

    Article  Google Scholar 

  15. Alexandre, E.; Cuadra, L.; Salcedo-Sanz, S.; Pastor-Sánchez, A.; Casanova-Mateo, C.: Hybridizing extreme learning machines and genetic algorithms to select acoustic features in vehicle classification applications. Neurocomputing 152, 58–68 (2015). https://doi.org/10.1016/j.neucom.2014.11.019

    Article  Google Scholar 

  16. Karungaru, S.; Dongyang, L.; Terada, K.: Vehicle detection and type classification based on cnn-svm. Int. J. Mach. Learn. Comput. 11(4), 304–310 (2021)

    Article  Google Scholar 

  17. Neupane, B.; Horanont, T.; Aryal, J.: Real-time vehicle classification and tracking using a transfer learning-improved deep learning network. Sensors 22(10), 3813 (2022). https://doi.org/10.3390/s22103813

    Article  Google Scholar 

  18. Oren, S.; Ceylan, H.; Dong, L.: Helical-shaped graphene tubular spring formed within microchannel for wearable strain sensor with wide dynamic range. IEEE Sens. Lett. 1(6), 1–4 (2017). https://doi.org/10.1109/LSENS.2017.2764046

    Article  Google Scholar 

  19. Arshad, A.; Khan, S.; Alam, A.Z.; Kadir, K.A.; Tasnim, R.; Ismail, A.F.: A capacitive proximity sensing scheme for human motion detection. In: Proceedings of 2017 IEEE International Instrumentation and Measurement Technology Conference, Torino, Italy, pp. 1–5 (2017)

  20. Baek, S.-H.; Park, I.-K.: Flexible piezoelectric nanogenerators based on a transferred zno nanorod/si micro-pillar array. Nanotechnology 28(9), 095401 (2017). https://doi.org/10.1088/1361-6528/aa58ee

    Article  Google Scholar 

  21. Bendine, K.; Hamdaoui, M.; Boukhoulda, B.F.: Piezoelectric energy harvesting from a bridge subjected to time-dependent moving loads using finite elements. Arab. J. Sci. Eng. 44(6), 5743–5763 (2019). https://doi.org/10.1007/s13369-019-03721-0

    Article  Google Scholar 

  22. Deng, H.-T.; Zhang, X.-R.; Wang, Z.-Y.; Wen, D.-L.; Ba, Y.-Y.; Kim, B.; Han, M.-D.; Zhang, H.-X.; Zhang, X.-S.: Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite. Nano Energy 83, 105823 (2021). https://doi.org/10.1016/j.nanoen.2021.105823

    Article  Google Scholar 

  23. Fan, F.-R.; Tian, Z.-Q.; Wang, Z.L.: Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004

    Article  Google Scholar 

  24. Yu, J.; Wen, Y.; Yang, L.; Zhao, Z.; Guo, Y.; Guo, X.: Monitoring on triboelectric nanogenerator and deep learning method. Nano Energy 92, 106698 (2022)

    Article  Google Scholar 

  25. Guo, H.; He, X.; Zhong, J.; Zhong, Q.; Leng, Q.; Hu, C.; Chen, J.; Tian, L.; Xi, Y.; Zhou, J.: A nanogenerator for harvesting airflow energy and light energy. J. Mater. Chem. A 2(7), 2079–2087 (2014). https://doi.org/10.1039/C3TA14421F

    Article  Google Scholar 

  26. Trinh, V.; Chung, C.: Harvesting mechanical energy, storage, and lighting using a novel pdms based triboelectric generator with inclined wall arrays and micro-topping structure. Appl. Energy 213, 353–365 (2018). https://doi.org/10.1016/j.apenergy.2018.01.039

    Article  Google Scholar 

  27. Pandya, S.; Velarde, G.; Zhang, L.; Wilbur, J.D.; Smith, A.; Hanrahan, B.; Dames, C.; Martin, L.W.: New approach to waste-heat energy harvesting: pyroelectric energy conversion. NPG Asia Mater. 11(1), 1–5 (2019). https://doi.org/10.1038/s41427-019-0125-y

    Article  Google Scholar 

  28. Bao, D.; Wen, Z.; Shi, J.; Xie, L.; Jiang, H.; Jiang, J.; Yang, Y.; Liao, W.; Sun, X.: An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J. Mater. Chem. A 8(27), 13787–13794 (2020). https://doi.org/10.1039/D0TA03215H

    Article  Google Scholar 

  29. Song, W.; Gan, B.; Jiang, T.; Zhang, Y.; Yu, A.; Yuan, H.; Chen, N.; Sun, C.; Wang, Z.L.: Nanopillar arrayed triboelectric nanogenerator as a self-powered sensitive sensor for a sleep monitoring system. Acs Nano 10(8), 8097–8103 (2016). https://doi.org/10.1021/acsnano.6b04344

    Article  Google Scholar 

  30. Zhang, P.; Deng, L.; Zhang, H.; Ma, Y.; He, J.: Carrying handle of milk carton inspired multi-layer, easy-to-assemble triboelectric nanogenerators for human motion sensing. Smart Mater. Struct. 31(11), 115026 (2022)

    Article  Google Scholar 

  31. Zhang, H.; Yang, Y.; Hou, T.-C.; Su, Y.; Hu, C.; Wang, Z.L.: Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy 2(5), 1019–1024 (2013). https://doi.org/10.1016/j.nanoen.2013.03.024

    Article  Google Scholar 

  32. Lin, Z.; Yang, J.; Li, X.; Wu, Y.; Wei, W.; Liu, J.; Chen, J.; Yang, J.: Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv. Funct. Mater. 28(1), 1704112 (2018). https://doi.org/10.1002/adfm.201704112

    Article  Google Scholar 

  33. Xia, X.; Liu, G.; Chen, L.; Li, W.; Xi, Y.; Shi, H.; Hu, C.: Foldable and portable triboelectric-electromagnetic generator for scavenging motion energy and as a sensitive gas flow sensor for detecting breath personality. Nanotechnology 26(47), 475402 (2015)

    Article  Google Scholar 

  34. Deng, J.; Kuang, X.; Liu, R.; Ding, W.; Wang, A.C.; Lai, Y.-C.; Dong, K.; Wen, Z.; Wang, Y.; Wang, L.: Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv. Mater. 30(14), 1705918 (2018). https://doi.org/10.1002/adma.201705918

    Article  Google Scholar 

  35. Park, J.; Kim, D.; Kim, Y.T.: Ultra-stretchable on-body-based soft triboelectric nanogenerator for electronic skin. Smart Mater. Struct. 29(11), 115031 (2020)

    Article  Google Scholar 

  36. Zhao, T.; Li, J.; Zeng, H.; Fu, Y.; He, H.; Xing, L.; Zhang, Y.; Xue, X.: Self-powered wearable sensing-textiles for real-time detecting environmental atmosphere and body motion based on surface-triboelectric coupling effect. Nanotechnology 29(40), 405504 (2018)

    Article  Google Scholar 

  37. Wang, Z.L.: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z

    Article  Google Scholar 

  38. Yadav, D.; Azad, P.: Low-cost triboelectric sensor for speed measurement and weight estimation of vehicles. IET Intell. Transp. Syst. 12(8), 958–964 (2018). https://doi.org/10.1049/iet-its.2018.5187

    Article  Google Scholar 

  39. Zhang, H.; Cheng, Q.; Lu, X.; Wang, W.; Wang, Z.L.; Sun, C.: Detection of driving actions on steering wheel using triboelectric nanogenerator via machine learning. Nano Energy 79, 105455 (2021). https://doi.org/10.1016/j.nanoen.2020.105455

    Article  Google Scholar 

  40. Meng, X.; Cheng, Q.; Jiang, X.; Fang, Z.; Chen, X.; Li, S.; Li, C.; Sun, C.; Wang, W.; Wang, Z.L.: Triboelectric nanogenerator as a highly sensitive self-powered sensor for driver behavior monitoring. Nano Energy 51, 721–727 (2018). https://doi.org/10.1016/j.nanoen.2018.07.026

    Article  Google Scholar 

  41. Zhang, H.; Tan, H.; Wang, W.; Li, Z.; Chen, F.; Jiang, X.; Lu, X.; Hu, Y.; Li, L.; Zhang, J.: Real-time non-driving behavior recognition using deep learning-assisted triboelectric sensors in conditionally automated driving. Adv. Funct. Mater. 33(6), 2210580 (2023). https://doi.org/10.1002/adfm.202210580

    Article  Google Scholar 

  42. Bowen, C.; Arafa, M.: Energy harvesting technologies for tire pressure monitoring systems. Adv. Energy Mater. 5(7), 1401787 (2015). https://doi.org/10.1002/aenm.201401787

    Article  Google Scholar 

  43. Guo, T.; Liu, G.; Pang, Y.; Wu, B.; Xi, F.; Zhao, J.; Bu, T.; Fu, X.; Li, X.; Zhang, C.: Compressible hexagonal-structured triboelectric nanogenerators for harvesting tire rotation energy. Extreme Mech. Lett. 18, 1–8 (2018). https://doi.org/10.1016/j.eml.2017.10.002

    Article  Google Scholar 

  44. Zhang, H.; Yang, Y.; Zhong, X.; Su, Y.; Zhou, Y.; Hu, C.; Wang, Z.L.: Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 8(1), 680–689 (2014). https://doi.org/10.1021/nn4053292

    Article  Google Scholar 

  45. Quevy, Q.; Cornetta, G.; Touhafi, A.: A new method for acoustic priority vehicle detection based on a self-powering triboelectric acoustic sensor suitable for low-power wireless sensor networks. Sensors 21(1), 158 (2020). https://doi.org/10.3390/s21010158

    Article  Google Scholar 

  46. Heo, D.; Kim, T.; Yong, H.; Yoo, K.T.; Lee, S.: Sustainable oscillating triboelectric nanogenerator as omnidirectional self-powered impact sensor. Nano Energy 50, 1–8 (2018). https://doi.org/10.1016/j.nanoen.2018.05.013

    Article  Google Scholar 

  47. Kang, M.; Kim, T.Y.; Seung, W.; Han, J.-H.; Kim, S.-W.: Cylindrical free-standing mode triboelectric generator for suspension system in vehicle. Micromachines 10(1), 17 (2018). https://doi.org/10.3390/mi10010017

    Article  Google Scholar 

  48. Chen, L.; Yuan, K.; Chen, S.; Huang, Y.; Askari, H.; Yu, N.; Mo, J.; Xu, N.; Wu, M.; Chen, H.; et al.: Triboelectric nanogenerator sensors for intelligent steering wheel aiming at automated driving. Nano Energy (2023). https://doi.org/10.1016/j.nanoen.2023.108575

    Article  Google Scholar 

  49. Li, X.; Yin, X.; Wang, W.; Zhao, H.; Liu, D.; Zhou, L.; Zhang, C.; Wang, J.: Carbon captured from vehicle exhaust by triboelectric particular filter as materials for energy storage. Nano Energy 56, 792–798 (2019). https://doi.org/10.1016/j.nanoen.2018.12.025

    Article  Google Scholar 

  50. Wang, S.; Lin, L.; Wang, Z.L.: Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11, 436–462 (2015)

    Article  Google Scholar 

  51. Batmaz, Z.; Yurekli, A.; Bilge, A.; Kaleli, C.: A review on deep learning for recommender systems: challenges and remedies. Artif. Intell. Rev. 52(1), 1–37 (2019). https://doi.org/10.1007/s10462-018-9654-y

    Article  Google Scholar 

  52. Dong, Z.; Wu, Y.; Pei, M.; Jia, Y.: Vehicle type classification using a semisupervised convolutional neural network. IEEE Transact. Intell. Transport. Syst. 16(4), 2247–2256 (2015). https://doi.org/10.1109/TITS.2015.2402438

    Article  Google Scholar 

  53. Zhao, D.; Chen, Y.; Lv, L.: Deep reinforcement learning with visual attention for vehicle classification. IEEE Transact. Cogn. Develop. Syst. 9(4), 356–367 (2017)

    Article  Google Scholar 

  54. Gao, H.; Cheng, B.; Wang, J.; Li, K.; Zhao, J.; Li, D.: Object classification using cnn-based fusion of vision and lidar in autonomous vehicle environment. IEEE Transact. Ind. Inform. 14(9), 4224–4231 (2018). https://doi.org/10.1109/TII.2018.2822828

    Article  Google Scholar 

  55. Wang, X.; Zhang, W.; Wu, X.; Xiao, L.; Qian, Y.; Fang, Z.: Real-time vehicle type classification with deep convolutional neural networks. J. Real-Time Image Process. 16(1), 5–14 (2019). https://doi.org/10.1007/s11554-017-0712-5

    Article  Google Scholar 

  56. Harras, A.; Tsuji, A.; Karungaru, S.; Terada, K.: Enhanced vehicle classification using transfer learning and a novel duplication-based data augmentation technique. Int. J. Innov. Comput. Inform. Control 21(6), 2201–2216 (2021)

    Google Scholar 

  57. Trivedi, J.; Devi, M.S.; Dhara, D.: Vehicle classification using the convolution neural network approach. Scientific Journal of Silesian University of Technology. Ser. Transp. 112, 201–209 (2021)

    Google Scholar 

  58. Butt, M.A.; Khattak, A.M.; Shafique, S.; Hayat, B.; Abid, S.; Kim, K.-I.; Ayub, M.W.; Sajid, A.; Adnan, A.: Convolutional neural network based vehicle classification in adverse illuminous conditions for intelligent transportation systems. Complexity (2021). https://doi.org/10.1155/2021/6644861

    Article  Google Scholar 

  59. Derrouz, H.; Cabri, A.; Ait Abdelali, H.; Thami, Oulad Haj; Bourzeix, F.; Rovetta, S.; Masulli, F.: End-to-end quantum-inspired method for vehicle classification based on video stream. Neural Comput. Appl. 34(7), 5561–5576 (2022). https://doi.org/10.1007/s00521-021-06718-9

    Article  Google Scholar 

  60. Kim, H.: Multiple vehicle tracking and classification system with a convolutional neural network. J. Ambient Intell. Humaniz. Comput. 13, 1603–1614 (2022). https://doi.org/10.1007/s12652-019-01429-5

    Article  Google Scholar 

  61. Barreyro, J.; Yoshioka, L.R.; Marte, C.L.: A non-intrusive category identification method based on the binary image of profile vehicles and cnn classification algorithm. In: Proceedings of the 24th IEEE International Intelligent Transportation Systems Conference, Indianapolis, IN, USA, pp. 1803–1808 (2021)

  62. Nooralahiyan, A.; Kirby, H.R.; McKeown, D.: Vehicle classification by acoustic signature. Math. Comput. Model. 27(9–11), 205–214 (1998)

    Article  Google Scholar 

  63. Simoncini, M.; Taccari, L.; Sambo, F.; Bravi, L.; Salti, S.; Lori, A.: Vehicle classification from low-frequency gps data with recurrent neural networks. Transport. Res. Part C Emerg. Technol. 91, 176–191 (2018). https://doi.org/10.1016/j.trc.2018.03.024

    Article  Google Scholar 

  64. Dabiri, S.; Marković, N.; Heaslip, K.; Reddy, C.K.: A deep convolutional neural network based approach for vehicle classification using large-scale gps trajectory data. Transport. Res. Part C Emerg. Technol. 116, 102644 (2020). https://doi.org/10.1016/j.trc.2020.102644

    Article  Google Scholar 

  65. Narayanan, R.M.; Wood, N.S.; Lewis, B.P.: Assessment of various multimodal fusion approaches using synthetic aperture radar (sar) and electro-optical (eo) imagery for vehicle classification via neural networks. Sensors 23(4), 2207 (2023). https://doi.org/10.3390/s23042207

    Article  Google Scholar 

  66. Wang, Z.L.: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z

    Article  Google Scholar 

  67. Kanik, M.; Say, M.G.; Daglar, B.; Yavuz, A.F.; Dolas, M.H.; El-Ashry, M.M.; Bayindir, M.: A motion-and sound-activated, 3d-printed, chalcogenide-based triboelectric nanogenerator. Adv. Mater. 27(14), 2367–2376 (2015). https://doi.org/10.1002/adma.201405944

    Article  Google Scholar 

  68. Nafari, A.; Sodano, H.: Surface morphology effects in a vibration based triboelectric energy harvester. Smart Mater. Struct. 27(1), 015029 (2017)

    Article  Google Scholar 

  69. Sriphan, S.; Vittayakorn, N.: Facile roughness fabrications and their roughness effects on electrical outputs of the triboelectric nanogenerator. Smart Mater. Struct. 27(10), 105026 (2018)

    Article  Google Scholar 

  70. Refaei, A.; Seleem, M.; Tharwat, A.; Mostafa, H.: A compact model for the zigzag triboelectric nanogenerator energy harvester. Int. J. Energy Res. 45(2), 1645–1660 (2021). https://doi.org/10.1002/er.5811

    Article  Google Scholar 

  71. LeCun, Y.; Bengio, Y.; Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  72. Mei, Z.; Ivanov, K.; Zhao, G.; Wu, Y.; Liu, M.; Wang, L.: Foot type classification using sensor-enabled footwear and 1d-cnn. Measurement 165, 108184 (2020)

    Article  Google Scholar 

  73. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J.: 1D convolutional neural networks and applications: a survey. Mech. Syst. Signal Process. 151, 107398 (2021). https://doi.org/10.1016/j.ymssp.2020.107398

  74. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Discov. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  Google Scholar 

  75. Goodfellow, I.J.; Bengio, Y.; Courville, A.C.: Deep Learning. Adaptive Computation and Machine Learning. MIT Press, (2016)

Download references

Acknowledgements

This work was supported by Eskisehir Technical University under grant 20ADP171.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of both authors. S.K. and Z.B. conceived the idea. S.K. fabricated the device, designed the experiment, including the triboelectric sensor output measurements. Z.B. performed experimental analysis for 1D-CNN. Both authors wrote the manuscript and have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Zeynep Batmaz.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinden, S., Batmaz, Z. Vehicle Classification Using Deep Learning-Assisted Triboelectric Sensor. Arab J Sci Eng 49, 6657–6673 (2024). https://doi.org/10.1007/s13369-023-08394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08394-4

Keywords

Navigation