Skip to main content

Advertisement

Log in

An Efficient Approach for Accident Severity Classification in Smart Transportation System

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Essential emergency services can be provided, and many lives can be saved if the severity of the road accident is analyzed well in time. Several works have been proposed to ascertain accident severity in intelligent transportation system based on traditional machine learning (ML) approaches such as Logistic Regression, Support Vector Machines (SVM), Random Forests, etc. The motive of this research is to propose an efficient and reliable approach for classifying the severity of road accidents through combined techniques of the feature space of extreme learning machine (ELM) and SVM, named as E-SVM, by making the best use of their characteristics. ELM performs feature mapping of input data, and further, the radial basis function kernel is utilized for training the SVM model, which performs the classification process. The Extra-Trees classifier used for feature selection leads to a reduced dataset of significant features which contributes towards efficient accident severity classification. The experimental results show that the proposed approach is better as compared to the other state-of-the-art ML classifiers both in terms of computational time and system performance, hence justifying its usage in real-life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. https://gnss.asia/new/ecall-emergency-alert-system-officially-launched-and-mandatory-for-new-eu-vehicles

  2. http://www.or.unimore.it/site/home/online-resources/machine-learning-for-severity-classification-of-accidents-involving-ptw.html

References

  1. Tian, R.; Li, L.; Chen, M.; et al.: Studying the effects of driver distraction and traffic density on the probability of crash and near-crash events in naturalistic driving environment. IEEE Trans. Intell. Transp. Syst. 14(3), 1547–1555 (2013)

    Google Scholar 

  2. Neelakandan, S.; Berlin, M.; Tripathi, S, et al: Iot-based traffic prediction and traffic signal control system for smart city. Soft Comput. pp. 1–8 (2021)

  3. Fantin, Irudaya.; Raj, E.; Appadurai, M.: Internet of things-based smart transportation system for smart cities. In: Intelligent Systems for Social Good. Springer, pp. 39–50 (2022)

  4. Andreescu, M.P.; Frost, D.B.: Weather and traffic accidents in Montreal, Canada. Clim. Res. 9(3), 225–230 (1998)

    Google Scholar 

  5. Andersson, A.; Chapman, L.: The use of a temporal analogue to predict future traffic accidents and winter road conditions in Sweden. Meteorol. Appl. 18(2), 125–136 (2011)

    Google Scholar 

  6. Touahmia, M.: Identification of risk factors influencing road traffic accidents. Eng. Technol. Appl. Sci. Res. 8(1), 2417–2421 (2018)

    Google Scholar 

  7. Frantzeskakis, J.M.; Iordanis, D.I.: Volume-to-capacity ratio and traffic accidents on interurban four-lane highways in Greece. Transp. Res. Rec. 1112, 29–38 (1987)

    Google Scholar 

  8. Hadjidimitriou, NS.; Lippi, M.; Dell’Amico, M, et al: Machine learning for severity classification of accidents involving powered two wheelers. In: IEEE Transactions on Intelligent Transportation Systems (2019)

  9. Moussa, G.S.; Owais, M.; Dabbour, E.: Variance-based global sensitivity analysis for rear-end crash investigation using deep learning. Accid. Anal. Prev. 165(106), 514 (2022)

    Google Scholar 

  10. Fayyaz, M.; Farhan, AA.; Javed, AR.: Thermal comfort model for hvac buildings using machine learning. In: Arabian Journal for Science and Engineering pp. 1–16 (2021)

  11. Lei, Y.; Yang, B.; Jiang, X.; et al.: Applications of machine learning to machine fault diagnosis: a review and roadmap. Mech. Syst. Signal Process. 138(106), 587 (2020)

    Google Scholar 

  12. Myszczynska, M.A.; Ojamies, P.N.; Lacoste, A.M.; et al.: Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 16(8), 440–456 (2020)

    Google Scholar 

  13. Lalmuanawma, S.; Hussain, J.; Chhakchhuak, L.: Applications of machine learning and artificial intelligence for covid-19 (sars-cov-2) pandemic: a review. Chaos, Solitons & Fractals p. 110059 (2020)

  14. Aslam, B.; Zafar, A.; Khalil, U.: Development of integrated deep learning and machine learning algorithm for the assessment of landslide hazard potential. Soft Comput. pp. 1–20 (2021)

  15. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    MATH  Google Scholar 

  16. Kaviani, P.; Dhotre, S.: Short survey on naive bayes algorithm. Int. J. Adv. Res. Comput. Sci. Manag. 04 (2017)

  17. Myles, A.J.; Feudale, R.N.; Liu, Y.; et al.: An introduction to decision tree modeling. J. Chemom. J. Chemom. Soc. 18(6), 275–285 (2004)

    Google Scholar 

  18. Ahmad, I.; Basheri, M.; Iqbal, M.J.; et al.: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 6, 33789–33795 (2018)

    Google Scholar 

  19. Chen, S.; Webb, G.I.; Liu, L.; et al.: A novel selective naïve bayes algorithm. Knowl. Based Syst. 192(105), 361 (2020)

    Google Scholar 

  20. Ibrahim, A.F.; Abdelaal, A.; Elkatatny, S.: Formation resistivity prediction using decision tree and random forest. Arab. J. Sci. Eng. pp. 1–9 (2022)

  21. Huang, G.B.; Zhu, Q.Y.; Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Google Scholar 

  22. Cao, J.; Hao, J.; Lai, X.; et al.: Ensemble extreme learning machine and sparse representation classification. J. Frankl. Inst. 353(17), 4526–4541 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Huang, Z.; Lei, D.; Huang, D.; et al.: Boundary moving least square method for 2d elasticity problems. Eng. Anal. Bound. Elem. 106, 505–512 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Tang, L.; Lu, Y.: Study of the grey verhulst model based on the weighted least square method. Phys. A Satistical Mech. Appl. 545(123), 615 (2020)

    MathSciNet  Google Scholar 

  25. Huang, G.B.; Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16), 3460–3468 (2008)

    Google Scholar 

  26. Huang, G.B.; Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70(16), 3056–3062 (2007)

    Google Scholar 

  27. Huang, G.B.; Ding, X.; Zhou, H.: Optimization method based extreme learning machine for classification. Neurocomputing 74(1), 155–163 (2010)

    Google Scholar 

  28. Hearst, M.A.; Dumais, S.T.; Osuna, E.; et al.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

    Google Scholar 

  29. Gunn, S.R.; et al.: Support vector machines for classification and regression. ISIS Tech. Rep. 14(1), 5–16 (1998)

    Google Scholar 

  30. Gholami, R.; Fakhari, N.: Support vector machine: principles, parameters, and applications. In: Handbook of Neural Computation. Elsevier, pp. 515–535 (2017)

  31. Behbahani, H.; Amiri, A.M.; Imaninasab, R.; et al.: Forecasting accident frequency of an urban road network: a comparison of four artificial neural network techniques. J. Forecast. 37(7), 767–780 (2018)

    MathSciNet  Google Scholar 

  32. Galatioto, F.; Catalano, M.; Shaikh, N.; et al.: Advanced accident prediction models and impacts assessment. IET Intell. Transp. Syst. 12(9), 1131–1141 (2018)

    Google Scholar 

  33. Mahariba, A.J.; Uthra. R.A.; Brunet, R.G.: An efficient automatic accident detection system using inertial measurement through machine learning techniques for powered two wheelers. Expert Syst. Appl. p. 116389 (2021)

  34. Sangare, M.; Gupta, S.; Bouzefrane, S.; et al.: Exploring the forecasting approach for road accidents: Analytical measures with hybrid machine learning. Expert Syst. Appl. 167(113), 855 (2021)

    Google Scholar 

  35. Mohanta, B.K.; Jena, D.; Mohapatra, N.; et al.: Machine learning based accident prediction in secure IOT enable transportation system. J. Intell. Fuzzy Syst. 42(2), 713–725 (2022)

    Google Scholar 

  36. Yan, M.; Shen, Y.: Traffic accident severity prediction based on random forest. Sustainability 14(3), 1729 (2022)

    Google Scholar 

  37. Mansoor, U.; Ratrout, N.T.; Rahman, S.M.; et al.: severity prediction using two-layer ensemble machine learning model for proactive emergency management. Crash. IEEE Access 8, 210,750-210,762 (2020)

    Google Scholar 

  38. Chen, M.M.; Chen, M.C.: Modeling road accident severity with comparisons of logistic regression, decision tree and random forest. Information 11(5), 270 (2020)

    Google Scholar 

  39. Gan, J.; Li, L.; Zhang, D, et al: An alternative method for traffic accident severity prediction: using deep forests algorithm. J. Adv. Transp. 2020 (2020)

  40. Lee, J.; Yoon, T.; Kwon, S.; et al.: Model evaluation for forecasting traffic accident severity in rainy seasons using machine learning algorithms: Seoul city study. Appl. Sci. 10(1), 129 (2020)

    Google Scholar 

  41. Ji, A.; Levinson, D.: Injury severity prediction from two-vehicle crash mechanisms with machine learning and ensemble models. IEEE Open J. Intell. Transp. Syst. 1, 217–226 (2020)

    Google Scholar 

  42. Princess, P.J.B.; Silas, S.; Rajsingh, E.B.: Classification of road accidents using svm and knn. In: Advances in Artificial Intelligence and Data Engineering. Springer, pp. 27–41 (2021)

  43. Kumar, S.; Toshniwal, D.: Severity analysis of powered two wheeler traffic accidents in Uttarakhand, India. Eur. Transp. Res. Rev. 9(2), 1–10 (2017)

    Google Scholar 

  44. Iranitalab, A.; Khattak, A.: Comparison of four statistical and machine learning methods for crash severity prediction. Accid. Anal. Prev. 108, 27–36 (2017)

    Google Scholar 

  45. Nguyen, H.; Cai, C.; Chen, F.: Automatic classification of traffic incident’s severity using machine learning approaches. IET Intell. Transp. Syst. 11(10), 615–623 (2017)

    Google Scholar 

  46. Theofilatos, A.; Yannis, G.; Antoniou, C.; et al.: Time series and support vector machines to predict powered-two-wheeler accident risk and accident type propensity: A combined approach. J. Tansp. Saf. Cur. 10(5), 471–490 (2018)

    Google Scholar 

  47. Zhang, J.; Li, Z.; Pu, Z.; et al.: Comparing prediction performance for crash injury severity among various machine learning and statistical methods. IEEE Access 6, 60079–60087 (2018)

    Google Scholar 

  48. Alkheder, S.; Taamneh, M.; Taamneh, S.: Severity prediction of traffic accident using an artificial neural network. J. Forecast. 36(1), 100–108 (2017)

    MathSciNet  Google Scholar 

  49. Pradhan, B.; Sameen, M.I,: Modeling traffic accident severity using neural networks and support vector machines. In: Laser Scanning Systems in Highway and Safety Assessment. Springer, pp. 111–117 (2020)

  50. Wahab, L.; Jiang, H.: Severity prediction of motorcycle crashes with machine learning methods. Int. J. Cashworthiness 25(5), 485–492 (2020)

    Google Scholar 

  51. Abdi, L.; Meddeb, A.: Driver information system: a combination of augmented reality, deep learning and vehicular ad-hoc networks. Multimed. Tools Appl. 77(12), 14673–14703 (2018)

    Google Scholar 

  52. Oyedele, A.; Ajayi, A.; Oyedele, L.O.; et al.: Deep learning and boosted trees for injuries prediction in power infrastructure projects. Appl. Soft Comput. 110(107), 587 (2021)

    Google Scholar 

  53. Sameen, M.I.; Pradhan, B.: Severity prediction of traffic accidents with recurrent neural networks. Appl. Sci. 7(6), 476 (2017)

    Google Scholar 

  54. Dong, C.; Shao, C.; Li, J, et al: An improved deep learning model for traffic crash prediction. J. Adv. Transp. 2018 (2018)

  55. Zheng, M.; Li, T.; Zhu, R.; et al.: Traffic accident’s severity prediction: A deep-learning approach-based cnn network. IEEE Access 7, 39897–39910 (2019)

    Google Scholar 

  56. Sethuraman, R.R.; Athisayam, J.S.K.: An improved feature selection based on naive bayes with kernel density estimator for opinion mining. Arab. J. Sci. Eng. 46(4), 4059–4071 (2021)

    Google Scholar 

  57. Sabzekar, M.; Aydin, Z.: A noise-aware feature selection approach for classification. Soft Comput. 25(8), 6391–6400 (2021)

    Google Scholar 

  58. Meenachi, L.; Ramakrishnan, S.: Differential evolution and aco based global optimal feature selection with fuzzy rough set for cancer data classification. Soft Comput. 24, 18463–18475 (2020)

    Google Scholar 

  59. Benesty, J.; Chen, J.; Huang, Y, et al: Pearson correlation coefficient. In: Noise reduction in speech processing. Springer, pp. 1–4 (2009)

  60. McHugh, M.L.: The chi-square test of independence. Biochem. Med. 23(2), 143–149 (2013)

    Google Scholar 

  61. Bursac, Z.; Gauss, C.H.; Williams, D.K.; et al.: Purposeful selection of variables in logistic regression. Source Code Biol. Med. 3(1), 1–8 (2008)

    Google Scholar 

  62. Guyon, I.; Weston, J.; Barnhill, S.; et al.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1), 389–422 (2002)

    MATH  Google Scholar 

  63. Rogers, J.; Gunn, S.: Identifying feature relevance using a random forest. In: International Statistical and Optimization Perspectives Workshop” Subspace, Latent Structure and Feature Selection”, Springer, pp. 173–184 (2005)

  64. Ke, G.; Meng, Q.; Finley, T.; et al.: Lightgbm: a highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30, 3146–3154 (2017)

    Google Scholar 

  65. Geurts, P.; Ernst, D.; Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    MATH  Google Scholar 

  66. Ahmad, M.W.; Reynolds, J.; Rezgui, Y.: Predictive modelling for solar thermal energy systems: a comparison of support vector regression, random forest, extra trees and regression trees. J. Clean. Prod. 203, 810–821 (2018)

    Google Scholar 

  67. Weisstein, E.W.: Moore-penrose matrix inverse. https://mathworldwolfram.com/ (2002)

  68. Tharwat, A.: Parameter investigation of support vector machine classifier with kernel functions. Knowl. Inf. Syst. 61(3), 1269–1302 (2019)

  69. Huang, G.B.; Chen, L.; Siew, C.K.; et al.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Google Scholar 

  70. Huang, G.B.; Zhou, H.; Ding, X.; et al.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 42(2), 513–529 (2011)

    Google Scholar 

  71. Huang, G.B.; Chen, Y.Q.; Babri, H.A.: Classification ability of single hidden layer feedforward neural networks. IEEE Trans. Neural Netw. 11(3), 799–801 (2000)

    Google Scholar 

  72. Sandberg, I.W.: General structures for classification. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 41(5), 372–376 (1994)

    MATH  Google Scholar 

  73. Nesterov, Y.; et al.: Lectures on convex optimization, vol. 137. Springer (2018)

    MATH  Google Scholar 

  74. Bishop, CM.: Pattern recognition. Mach. Learn. 128(9) (2006)

  75. Cutler, A.; Cutler, DR.; Stevens, JR.: Random forests. In: Ensemble machine learning. Springer, pp. 157–175 (2012)

  76. Deng, Z.; Zhu, X.; Cheng, D.; et al.: Efficient knn classification algorithm for big data. Neurocomputing 195, 143–148 (2016)

    Google Scholar 

  77. Chauhan, V.K.; Dahiya, K.; Sharma, A.: Problem formulations and solvers in linear svm: a review. Artif. Intell. Rev. 52(2), 803–855 (2019)

    Google Scholar 

  78. Prajapati, G.L.; Patle, A.: On performing classification using svm with radial basis and polynomial kernel functions. In: 2010 3rd International Co nference on Emerging Trends in Engineering and Technology, IEEE, pp. 512–515 (2010)

  79. Miikkulainen, R.; Liang, J.; Meyerson, E, et al: Evolving deep neural networks. In: Artificial intelligence in the age of neural networks and brain computing. Elsevier, pp. 293–312 (2019)

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Department of Science and Technology (DST), Government of India, under Innovation in Science Pursuit for Inspired Research (INSPIRE) Fellowship, INSPIRE Code- IF190242, for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravneet Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Roul, R.K. & Batra, S. An Efficient Approach for Accident Severity Classification in Smart Transportation System. Arab J Sci Eng 48, 9645–9659 (2023). https://doi.org/10.1007/s13369-022-07274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07274-7

Keywords

Navigation