Skip to main content

Advertisement

Log in

Exploration of Fiber-Reinforced Geopolymer Mortars Containing Recycled Aggregates and Marble Powder

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Environmental and economic problems arising from cement production have made it necessary to find alternative binders. At this point, geopolymer mortars have come to the fore as an alternative construction material. In this study, 40% metakaolin + mineral additives (20% fly ash + 20% granulated blast furnace slag + 20% red mud) were used as binding material. NaOH (12M) and Na2SiO3 solutions were used. Recycling concrete aggregate and marble powder (MP) were used in equal proportions as aggregate. Different types of fibers (steel fiber (SF), polyamide fiber (PAF), and polypropylene fiber (PPF)) were used with different ratios (0.25, 0.50, 0.75, and 1%). In addition to mechanical properties (7, 28, and 56 days) such as compressive strength (CS), flexural strength (FS), and ultrasonic pulse velocity, high temperature, freezing–thawing, and sulfate resistances were performed. Results indicated that the series with 1% vol. SF had the highest unit weight and low water absorption, with the highest CS 38.5 MPa and FS 27.88% higher than the reference. However, considering the durability resistance, the best performance was observed in the series with 1% PPF by volume. The residual CS of this series after freezing–thawing was 32.95 MPa, the FS was 4.90 MPa, the CSs after Na2SO4 and Mg2SO4 were 38.32 MPa and 41.40 MPa, and FSs were 5.05 MPa and 4.41 MPa, respectively. Considering the abrasion resistance loss, the sequence of the series was as follows: 0.5% by volume PPF > 0.75% by volume PAF = 0.25% by volume SF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Shaikh, F.U.A.: Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. Int. J. Sustain. Built Environ. 5(2), 277–287 (2016)

    Article  MathSciNet  Google Scholar 

  2. Maholtra, V.: Introduction: sustainable development and concrete technology. ACI Concr. Int. 24(7), 1–22 (2002)

    Google Scholar 

  3. Madlool, N.A.; Saidur, R.; Hossain, M.S.; Rahim, N.A.: A critical review on energy use and savings in the cement industries. Renew. Sustain. Energy Rev. 15(4), 2042–2060 (2011)

    Article  Google Scholar 

  4. Al Bakri, A.; Mohammed, H.; Kamarudin, H.; Niza, I.K.; Zarina, Y.: Review on fly ash-based geopolymer concrete without Portland Cement. J. Eng. Technol. Res. 3(1), 1–4 (2011)

    Google Scholar 

  5. Revathi, V.; Saravanakumar, R.; Thaarrini, J.: Effect of molar ratio of SiO2/Na2O, Na2SiO3/NaOH ratio and curing mode on the compressive strength of ground bottom ash geopolymer mortar. Int. J. Earth Sci. Eng. 7(4), 1511–1516 (2014)

    Google Scholar 

  6. Patankar, S.V.; Ghugal, Y.M.; Jamkar, S.S.: Effect of concentration of sodium hydroxide and degree of heat curing on fly ash-based geopolymer mortar. Indian J. Mater. Sci. (2014).

  7. Xu, A.; Shayan, A.: Effect of activator and water to binder ratios on setting and strength of geopolymer concrete. In: ARRB conference, 27th, 2016, Melbourne, Victoria, Australia (2016)

  8. Lloyd, N.; Rangan, V.: Geopolymer concrete with fly ash. In: Proceedings of the second international conference on sustainable construction materials and technologies. UWM Center for By-Products Utilization, pp. 1493–1504 (2010)

  9. Niş, A.: Compressive strength variation of alkali activated fly ash/slag concrete with different NaOH concentrations and sodium silicate to sodium hydroxide ratios. J. Sustain. Constr. Mater. Technol. 4(2), 351–360 (2019)

    Article  Google Scholar 

  10. Nath, P.; Sarker, P.K.: Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 66, 163–171 (2014)

    Article  Google Scholar 

  11. Nuaklong, P.; Sata, V.; Chindaprasirt, P.: Influence of recycled aggregate on fly ash geopolymer concrete properties. J. Clean. Product. 112, 2300–2307 (2016)

    Article  Google Scholar 

  12. Joseph, B.; Mathew, G.: Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Sci. Iran. 19(5), 1188–1194 (2012)

    Article  Google Scholar 

  13. Rovnaník, P.: Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 24(7), 1176–1183 (2010)

    Article  Google Scholar 

  14. Shamsa, M.H.; Al-Shathr, B.S.; Al-Attar, T.S.: Performance of geopolymer concrete exposed to freezing and thawing cycles. Eng. Technol. J. 37(A3), 78–84 (2019)

    Article  Google Scholar 

  15. Zhao, R.; Yuan, Y.; Cheng, Z.; Wen, T.; Li, J.; Li, F.; Ma, Z.J.: Freeze-thaw resistance of Class F fly ash-based geopolymer concrete. Constr. Build. Mater. 222, 474–483 (2019)

    Article  Google Scholar 

  16. Elyamany, H.E.; Abd Elmoaty, M.; Elshaboury, A.M.: Magnesium sulfate resistance of geopolymer mortar. Constr. Build. Mater. 184, 111–127 (2018)

    Article  Google Scholar 

  17. Shaikh, F.U.A.; Hosan, A.: Mechanical properties of steel fibre reinforced geopolymer concretes at elevated temperatures. Constr. Build. Mater. 114, 15–28 (2016)

    Article  Google Scholar 

  18. Kong, D.L.Y.; Sanjayan, J.G.; Sagoe-Crentsil, K.: Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 37(12), 1583–1589 (2007)

    Article  Google Scholar 

  19. Nasir, M.; Megat Johari, M.A.; Yusuf, M.O.; Maslehuddin, M.; Al-Harthi, M.A.; Dafalla, H.: Impact of slag content and curing methods on the strength of alkaline-activated silico-manganese fume/blast furnace slag mortars. Arab. J. Sci. Eng. 44(10), 8325–8335 (2019)

    Article  Google Scholar 

  20. Nasir, M.; Johari, M.A.M.; Adesina, A.; Maslehuddin, M.; Yusuf, M.O.; Mijarsh, M.J.; Ibrahim, M.; Najamuddin, S.K.: Evolution of room-cured alkali-activated silicomanganese fume-based green mortar designed using Taguchi method. Constr. Build. Mater. 307, 11 (2021)

    Article  Google Scholar 

  21. Kuranlı, Ö.F.; Uysal, M.; Abbas, M.T.; Cosgun, T.; Niş, A.; Aygörmez, Y.; Canpolat, O.; Al-mashhadani, M.M.: Evaluation of slag/fly ash based geopolymer concrete with steel, polypropylene and polyamide fibers. Constr. Build. Mater. 325, 3 (2022)

    Article  Google Scholar 

  22. Zada Farhan, K.; Azmi Azmi Megat Johari, M.; Demirboğa, R.: Evaluation of properties of steel fiber reinforced GGBFS-based geopolymer composites in aggressive environments. Constr. Build. Mater. 345, 128339 (2022)

    Article  Google Scholar 

  23. Nasir, M.; Megat Johari, M.A.; Maslehuddin, M.; Yusuf, M.O.: Magnesium sulfate resistance of alkali/slag activated silico-manganese fume-based composites. Constr. Build. Mater. 265, 12 (2020)

    Article  Google Scholar 

  24. Nasir, M.; Johari, M.A.M.; Maslehuddin, M.; Yusuf, M.O.: Sodium sulfate resistance of alkali/slag activated silico-manganese fume-based composites. Struct. Concr. 22(S1), E415–E429 (2021)

    Google Scholar 

  25. Nasir, M.; Megat Johari, M.A.; Maslehuddin, M.; Yusuf, M.O.: Sulfuric acid resistance of alkali/slag activated silico-manganese fume-based mortars. Struct. Concr. 22(S1), E400–E414 (2021)

    Google Scholar 

  26. Bellum, R.R.: Influence of steel and PP fibers on mechanical and microstructural properties of fly ash-GGBFS based geopolymer composites. Ceram. Int. 48(5), 6808–6818 (2022)

    Article  Google Scholar 

  27. Beycioglu, A.: Modeling the effects of industrial wastes on properties of lightweight concrete by fuzzy logic method. Süleyman Demirel University, Kaskelen (2008)

    Google Scholar 

  28. Kavak, A.; Bilgen, G.; Capar, O.: Using ground granulated blast furnace slag with seawater as soil additives in lime-clay stabilization. J. ASTM Int. 8(7), 1–12 (2011)

    Article  Google Scholar 

  29. Dayi, M.; Aruntas, H.Y.; Cavus, M.; Simsek, O.: Investigation of usability of zeolite, fly ash and waste glass materials in Portland composite cement production (2013)

  30. Topcu, I.B.; Canbaz, M.: Effect of different fibers on the mechanical properties of concrete containing fly ash. Constr. Build. Mater. 21(7), 1486–1491 (2007)

    Article  Google Scholar 

  31. Fu, X.; Wang, Z.; Tao, W.; Yang, C.; Hou, W.; Dong, Y.; Wu, X.: Studies on blended cement with a large amount of fly ash. Cem. Concr. Res. 32(7), 1153–1159 (2002)

    Article  Google Scholar 

  32. Barness, P.; Bensted, J.: Structure and performance of cements. In: Jones, T.R. (Ed.) Chapter 15: Metakaolin as a pozzolanic addition to concrete, p. 372. Routledge, Florence (2001)

    Google Scholar 

  33. Yildiz, A.; Akyildiz, A.; Köse, E.T.: Recycling of red mud as a building material via a stabilization/solidification method. Asian J. Chem. 25(1), 266–270 (2013)

    Article  Google Scholar 

  34. Kalkan, E.: Utilization of red mud as a stabilization material for the preparation of clay liners. Eng. Geol. 87(3–4), 220–229 (2006)

    Article  Google Scholar 

  35. Celik, A.; Yilmaz, K.; Canpolat, O.; Al-mashhadani, M.M.; Aygörmez, Y.; Uysal, M.: High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Constr. Build. Mater. 187, 1190–1203 (2018)

    Article  Google Scholar 

  36. Unal, O.; Topcu, I.B.; Uygunoglu, T.: Use of marble dust in self compacting concrete. In: Proceedings of V Symposium MERSEM0, pp. 413–420 (2006)

  37. Şahin, F.; Uysal, M.; Canpolat, O.; Aygörmez, Y.; Cosgun, T.; Dehghanpour, H.: Effect of basalt fiber on metakaolin-based geopolymer mortars containing rilem, basalt and recycled waste concrete aggregates. Constr. Build. Mater. 301(9), 124113 (2021)

    Article  Google Scholar 

  38. Hassan, A.; Arif, M.; Shariq, M.: Use of geopolymer concrete for a cleaner and sustainable environment—a review of mechanical properties and microstructure. J. Clean. Product. 223, 704–728 (2019)

    Article  Google Scholar 

  39. Yang, J.; Xiao, B.: Development of unsintered construction materials from red mud wastes produced in the sintering alumina process. Constr. Build. Mater. 22(12), 2299–2307 (2008)

    Article  Google Scholar 

  40. Liu, W.; Yang, J.; Xiao, B.: Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. J. Hazard. Mater. 161(1), 474–478 (2009)

    Article  Google Scholar 

  41. Yip, C.K.; Lukey, G.C.; Provis, J.L.; Van Deventer, J.S.J.: Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38(4), 554–564 (2008)

    Article  Google Scholar 

  42. Hillerborg, A.: The theoretical basis of a method to determine the fracture energy GF of concrete. Mater. Struct. 18(4), 291–296 (1985)

    Article  Google Scholar 

  43. Sathonsaowaphak, A.; Chindaprasirt, P.; Pimraksa, K.: Workability and strength of lignite bottom ash geopolymer mortar. J. Hazard. Mater. 168, 44–50 (2009)

    Article  Google Scholar 

  44. Hadi, M.N.; Zhang, H.; Parkinson, S.: Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability. J. Build. Eng. 23, 301–313 (2019)

    Article  Google Scholar 

  45. Mehta, A.; Siddique, R.; Singh, B.P.; Aggoun, S.; Łagód, G.; Barnat-Hunek, D.: Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method. Constr. Build. Mater. 150, 817–824 (2017)

    Article  Google Scholar 

  46. He, J.; Jie, Y.; Zhang, J.; Yu, Y.; Zhang, G.: Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem. Concr. Compos. 37, 108–118 (2013)

    Article  Google Scholar 

  47. Sarker, P.K.; Haque, R.; Ramgolam, K.V.: Fracture behaviour of heat cured fly ash based geopolymer concrete. Mater. Design 44, 580–586 (2013)

    Article  Google Scholar 

  48. Pacheco-Torgal, F.; Moura, D.; Ding, Y.; Jalali, S.: Composition, strength and workability of alkali-activated metakaolin based mortars. Constr. Build. Mater. 25(9), 3732–3745 (2011)

    Article  Google Scholar 

  49. Değirmenci, F.N.: Freeze-Thaw and fire resistance of geopolymer mortar based on natural and waste pozzolans. Ceram.-Silik. 62(1), 41–49 (2018)

    Google Scholar 

  50. Ganeshan, M.; Sreevidya, V.: Durability and microstructural studies on fly ash blended self-compacting geopolymer concrete. Eur. J. Environ. Civ. Eng. 25(11), 2074–2088 (2021)

    Article  Google Scholar 

  51. Olivia, M.; Nikraz, H.: Properties of fly ash geopolymer concrete designed by Taguchi method. Mater. Design (1980–2015) 36, 191–198 (2012)

    Article  Google Scholar 

  52. Bayer Öztürk, Z.; Çam, T.: Performance of eco-friendly fly ash-based geopolymer mortars with stone-cutting waste. Mater. Chem. Phys. 307, 12811 (2023)

    Article  Google Scholar 

  53. Bayrak, B.; Benli, A.; Alcan, H.G.; Çelebi, O.; Kaplan, G.; Aydın, A.C.: Recycling of waste marble powder and waste colemanite in ternary-blended green geopolymer composites: mechanical, durability and microstructural properties. J. Build. Eng. 73(8), 106661 (2023)

    Article  Google Scholar 

  54. Ilcan, H.; Sahin, O.; Unsal, Z.; Ozcelikci, E.; Kul, A.; Cağatay, D.N.; Ozkan, E.M.; Sahmaran, M.: Effect of industrial waste-based precursors on the fresh, hardened and environmental performance of construction and demolition wastes-based geopolymers. Constr. Build. Mater. 394(8), 132265 (2023)

    Article  Google Scholar 

  55. Mudgal, M.; Singh, A.; Chouhan, R.K.; Acharya, A.; Srivastava, A.K.: Fly ash red mud geopolymer with improved mechanical strength. Clean. Eng. Technol. 4(10), 100215 (2021)

    Article  Google Scholar 

  56. Shilar, F.A.; Ganachari, S.V.; Patil, V.B.; Nisar, K.S.: Evaluation of structural performances of metakaolin based geopolymer concrete. J. Mater. Res. Techno. 20(9), 3208–3228 (2022)

    Article  Google Scholar 

  57. Uysal, M.; Al-mashhadani, M.M.; Aygörmez, Y.; Canpolat, O.: Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Constr. Build. Mater. 176, 271–282 (2018)

    Article  Google Scholar 

  58. Uysal, M.; Aygörmez, Y.; Canpolat, O.; Cosgun, T.; Faruk Kuranlı, Ö.: Investigation of using waste marble powder, brick powder, ceramic powder, glass powder, and rice husk ash as eco-friendly aggregate in sustainable red mud-metakaolin based geopolymer composites. Constr. Build. Mater. 361(12), 129718 (2022)

    Article  Google Scholar 

  59. Witzke, F.B.; Beltrame, N.A.M.; Angulski da Luz, C.; Medeiros-Junior, R.A.: Abrasion resistance of metakaolin-based geopolymers through accelerated testing and natural wear. Wear 530–531, 204996 (2023)

    Article  Google Scholar 

  60. Zhang, Y.J.; Li, S.; Wang, Y.C.; Ve Xu, D.L.: Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature. J. Non-Cryst. Solid. 358, 620–624 (2012)

    Article  Google Scholar 

  61. Zhang, H.Y.; Kodur, V.; Wu, B.; Cao, L.; Qi, S.L.: Comparative thermal and mechanical performance of geopolymers derived from metakaolin and fly ash. J. Mater. Civ. Eng. 28(2), 04015092 (2016)

    Article  Google Scholar 

  62. Topçu, İB.; Boğa, A.R.; Demir, A.: The effect of elevated temperatures on corroded and uncorroded reinforcement embedded in mortar. Constr. Build. Mater. 24(11), 2101–2107 (2010)

    Article  Google Scholar 

  63. Fan, F.; Liu, Z.; Xu, G.; Peng, H.; Cai, C.S.: Mechanical and thermal properties of fly ash based geopolymers. Constr. Build. Mater. 160, 66–81 (2018)

    Article  Google Scholar 

  64. Nadia, T.; El Abidine, R.Z.; Mekki, M.; Zoubir, D.: Combined effect of high temperatures and crystalline slag on the mechanical behavior of geopolymers mortars. Mater. Today: Proc. 49, 1051–1055 (2020)

    Google Scholar 

  65. Kuri, J.C.; Majhi, S.; Sarker, P.K.; Mukherjee, A.: Microstructural and non-destructive investigation of the effect of high temperature exposure on ground ferronickel slag blended fly ash geopolymer mortars. J. Build. Eng. 43(11), 103099 (2021)

    Article  Google Scholar 

  66. Basheer, L.; Kropp, J.; Cleland, D.J.: Assessment of the durability of concrete from its permeation properties: a review. Constr. Build. Mater. 15(2–3), 93–103 (2001)

    Article  Google Scholar 

  67. Guo, X.; Xiong, G.: Resistance of fiber-reinforced fly ash-steel slag based geopolymer mortar to sulfate attack and drying-wetting cycles. Constr. Build. Mater. 269(2), 121326 (2021)

    Article  Google Scholar 

  68. Li, F.; Chen, D.; Lu, Y.; Zhang, H.; Li, S.: Influence of mixed fibers on fly ash based geopolymer resistance against freeze-thaw cycles. J. Non-Cryst. Sol. 584(5), 121517 (2022)

    Article  Google Scholar 

  69. Wang, K.; Zhang, P.; Guo, J.; Gao, Z.: Single and synergistic enhancement on durability of geopolymer mortar by polyvinyl alcohol fiber and nano-SiO2. J. Mater. Res. Technol. 15(11), 1801–1814 (2021)

    Article  Google Scholar 

  70. Salami, B.A.; Johari, M.A.M.; Ahmad, Z.A.; Maslehuddin, M.: Durability performance of palm oil fuel ash-based engineered alkaline-activated cementitious composite (POFA-EACC) mortar in sulfate environment. Constr. Build. Mater. 131, 229 (2017)

    Article  Google Scholar 

  71. Jiao, Z.; Li, X.; Yu, Q.; Yao, Q.; Hu, P.: Sulfate resistance of class C/class F fly ash geopolymers. J. Mater. Res. Technol. 23(3), 1767–1780 (2023)

    Article  Google Scholar 

  72. Supit, S.W.; Olivia, M.: Compressive strength and sulfate resistance of metakaolin-based geopolymer mortar with different ratio of alkaline activator. Mater. Today: Proceed. 66(1), 2776–2779 (2022)

    Google Scholar 

  73. Kuri, J.C.; Nuruzzaman, M.; Sarker, P.K.: Sodium sulphate resistance of geopolymer mortar produced using ground ferronickel slag with fly ash. Ceram. Int. 49(2), 2765–2773 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The experimental work was supported by the research fund of Balikesir University, the authors would like to express their sincere gratitude to the scientific research coordination unit for their financial support of the project (Project number: 2022/101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurdakul Aygörmez.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, A., Ergün, S., Uysal, M. et al. Exploration of Fiber-Reinforced Geopolymer Mortars Containing Recycled Aggregates and Marble Powder. Arab J Sci Eng 49, 5179–5202 (2024). https://doi.org/10.1007/s13369-023-08357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08357-9

Keywords

Navigation