Skip to main content
Log in

Square Polyhedron Transmitter for Three-Dimensional Omnidirectional Wireless Power Transfer

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Achieving three-dimensional (3D) omnidirectional wireless power transfer (OWPT) without any active control is challenging. This paper proposes a square polyhedron transmitter (SPTx) based on the reverse current of parallel coil, which can create a 3D omnidirectional magnetic field. To minimize the counteracting of the reverse magnetic field, each coil is equipped with magnetic shielding material. The coils of SPTx are connected in series and excited by a single power supply without any current amplitude or phase control circuits. The performance of SPTx system is validated with different receivers (Rx) by experiments. In the experiment with dual Rxs, the maximum transmission efficiency is 79.6% with an efficiency stability rate of 49%. In addition, the output power does not affect the efficiency, and more Rxs will increase transmission efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Siroos, A.; Sedighizadeh, M.; Afjei, E.; et al.: System identification and control design of a wireless charging transfer system with double-sided LCC converter. Arab. J. Sci. Eng. 46, 9735–9751 (2021)

    Article  Google Scholar 

  2. Barman, S.D.; Reza, A.W.; Kumar, N.; Ershadul Karim, Md.; Munir, A.B.: Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications. Renew. Sustain. Energy Rev. 51, 1525–1552 (2015)

    Article  Google Scholar 

  3. García Núñez, C.; Manjakkal, L.; Dahiya, R.: Energy autonomous electronic skin, npj Flex Electron 3, January (2019)

  4. Han, W.; Chau, K.T.; Jiang, C.; Liu, W.; Lam, W.H.: Design and analysis of quasi-omnidirectional dynamic wireless power transfer for fly-and-charge. IEEE Trans. Magn. 55(7), 1–9 (2019)

    Google Scholar 

  5. Feng, J.; Li, Q.; Lee, F.C.; Fu, M.: LCCL-LC Resonant converter and its soft switching realization for omnidirectional wireless power transfer systems. IEEE Trans. Power Electron. 36(4), 3828–3839 (2021)

    Article  Google Scholar 

  6. Li, W.; Wang, Q.; Wang, Y.; Kang, J.: Three-dimensional rotatable omnidirectional MCR WPT systems. IET Power Electron. 13, 256–265 (2020)

    Article  Google Scholar 

  7. Lu, C.; Huang, X.; Tao, X.; Liu, X.; Rong, C.; Zeng, Y.; Liu, M.: Design and analysis of an omnidirectional dual-band wireless power transfer system. IEEE Trans. Antennas. Propag. 69(6), 3493–3502 (2021)

    Article  Google Scholar 

  8. Dai, Z.; Fang, Z.; Huang, H.; He, Y.; Wang, J.: Selective omnidirectional magnetic resonant coupling wireless power transfer with multiple-receiver system. IEEE Access 6, 19287–19294 (2018)

    Article  Google Scholar 

  9. Zhang, X.; Liu, F.; Mei, T.: Multifrequency phase-shifted control for multiphase multiload MCR WPT system to achieve targeted power distribution and high misalignment tolerance. IEEE Trans. Power Electron. 36(1), 991–1003 (2021)

    Article  Google Scholar 

  10. Che, B.-J.; Yang, G.; Meng, F.-Y.; Zhang, K.; Fu, J.; Wu, Q.; Sun, L.: Omnidirectional non-radiative wireless power transfer with rotating magnetic field and efficiency improvement by metamaterial. Appl. Phys. A 116, 1579–1586 (2014)

    Article  Google Scholar 

  11. Zhu, Q.; Su, M.; Sun, Y.; Tang, W.; Hu, A.P.: Field orientation based on current amplitude and phase angle control for wireless power transfer. IEEE Trans. Industr. Electron. 65(6), 4758–4770 (2018)

    Article  Google Scholar 

  12. Cha, H.-R.; Park, K.-R.; Kim, T.-J.; Kim, R.-Y.: Design of magnetic structure for omnidirectional wireless power transfer. IEEE Trans. Power Electron. 36(8), 8849–8860 (2021)

    Article  Google Scholar 

  13. Tian, X.; Chau, K.T.; Liu, W.; Pang, H.; Lee, C.H.T.: Maximum power tracking for magnetic field editing-based omnidirectional wireless power transfer. IEEE Trans. Power Electron. 37(10), 12901–12912 (2022)

    Article  Google Scholar 

  14. Feng, T.; Sun, Y.; Feng, Y.; Dai, X.: A tripolar plane-type transmitter for three-dimensional omnidirectional wireless power transfer. IEEE Trans. Ind. Appl. 58(1), 1254–1267 (2022)

    Article  Google Scholar 

  15. Wu, S.; Cai, C.; Liu, X.; Chai, W.; Yang, S.: Compact and free-positioning omnidirectional wireless power transfer system for unmanned aerial vehicle charging applications. IEEE Trans. Power Electron. 37(8), 8790–8794 (2022)

    Article  Google Scholar 

  16. Feng, T.; Zuo, Z.; Sun, Y.; Dai, X.; Wu, X.; Zhu, L.: A reticulated planar transmitter using a three-dimensional rotating magnetic field for free-positioning omnidirectional wireless power transfer. IEEE Trans. Power Electron. 37(8), 9999–10015 (2022)

    Article  Google Scholar 

  17. Feng, T.; Sun, Y.; Zuo, Z.; Wang, Z.; Dai, X.: Magnetic field analysis and excitation currents optimization for an omnidirectional WPT system based on three-phase tubular coils. IEEE Aver. Trans. Effic. Effic. Stab. Ratio Trans. Ind. Appl. 58(1), 1268–1278 (2022)

    Google Scholar 

  18. Lin, D.; Zhang, C.; Hui, S.Y.R.: Mathematical analysis of omnidirectional wireless power transfer part-i: two-dimensional systems. IEEE Trans. Power Electron. 32(1), 625–633 (2017)

    Article  Google Scholar 

  19. Lin, D.; Zhang, C.; Hui, S.Y.R.: Mathematic analysis of omnidirectional wireless power transfer part-ii three-dimensional systems. IEEE Trans. Power Electron. 32(1), 613–624 (2017)

    Article  Google Scholar 

  20. Wang, H.; Zhang, C.; Yang, Y.; Liang, H.W.R.; Hui, S.Y.R.: A comparative study on overall efficiency of two-dimensional wireless power transfer systems using rotational and directional methods. IEEE Trans. Industr. Electron. 69(1), 260–269 (2022)

    Article  Google Scholar 

  21. Liu, G.; Zhang, B.; Xiao, W.; Qiu, D.; Chen, Y.; Guan, J.: Omnidirectional wireless power transfer system based on rotary transmitting coil for household appliances. Energies 11(4), 878 (2018)

    Article  Google Scholar 

  22. Jayathurathnage, P.; Dang, X.; Simovski, C.R.; Tretyakov, S.A.: Self-tuning omnidirectional wireless power transfer using double-toroidal helix coils. IEEE Trans. Industr. Electron. 69(7), 6828–6837 (2022)

    Article  Google Scholar 

  23. Choi, B.H.; Lee, E.S.; Sohn, Y.H.; Jang, G.C.; Rim, C.T.: Six degrees of freedom mobile inductive power transfer by crossed dipole Tx and Rx coils. IEEE Trans. Power Electron. 31(4), 3252–3272 (2016)

    Article  Google Scholar 

  24. Rong, C.; He, X.; Liu, M.; Wang, Y.; Liu, X.; Lu, C.; Zeng, Y.; Liu, R.: Omnidirectional free-degree wireless power transfer system based on magnetic dipole coils for multiple receivers. IEEE Access 9, 81588–81600 (2021)

    Article  Google Scholar 

  25. Rong, C.; He, X.; Zeng, Y.; Lu, C.; Liu, M.: High-efficiency orientation insensitive WPT systems using magnetic dipole coil for low-power devices. IEEE Trans. Power Electron. 37(5), 4985–4990 (2022)

    Article  Google Scholar 

  26. Ha-Van, N.; Liu, Y.; Jayathurathnage, P.; Simovski, C.R.; Tretyakov, S.A.: Cylindrical transmitting coil for two-dimensional omnidirectional wireless power transfer. IEEE Trans. Industr. Electron. 69(10), 10045–10054 (2022)

    Article  Google Scholar 

  27. Ha-Van, N.; Seo, C.: Analytical and experimental investigations of omnidirectional wireless power transfer using a cubic transmitter. IEEE Trans. Industr. Electron. 65(2), 1358–1366 (2018)

    Article  Google Scholar 

  28. Tan, L.; Zhong, R.; Tang, Z.; Huang, T.; Huang, X.; Meng, T.; Zhai, X.; Wang, C.; Xu, Y.; Yang, Q.: Power stability optimization design of three-dimensional wireless power transmission system in multi-load application scenarios. IEEE Access 8, 91843–91854 (2020)

    Article  Google Scholar 

  29. Li, J.; Yang, Y.; Yan, H.; Liu, C.; Dong, L.; Wang, G.: Quasi-omnidirectional wireless power transfer for a sensor system. IEEE Sens. J. 20(11), 6148–6159 (2020)

    Article  Google Scholar 

  30. Feng, J.; Li, Q.; Lee, F.C.; Fu, M.: Transmitter coils design for free-positioning omnidirectional wireless power transfer system. IEEE Trans. Industr. Inf. 15(8), 4656–4664 (2019)

    Article  Google Scholar 

  31. Kim, J.H.; Choi, B.G.; Jeong, S.Y.; Han, S.H.; Kim, H.R.; Rim, C.T.; Kim, Y.-S.: Plane-type receiving coil with minimum number of coils for omnidirectional wireless power transfer. IEEE Trans. Power Electron. 35(6), 6165–6174 (2020)

    Article  Google Scholar 

  32. Zhang, Z.; Zhang, B.: Angular-misalignment insensitive omnidirectional wireless power transfer. IEEE Trans. Industr. Electron. 67(4), 2755–2764 (2020)

    Article  Google Scholar 

  33. Zhang, Z.; Zhang, B.: Omnidirectional and efficient wireless power transfer system for logistic robots. IEEE Access 8, 13683–13693 (2020)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 52074305 and 51874300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Tian.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Guo, B., Tian, Z. et al. Square Polyhedron Transmitter for Three-Dimensional Omnidirectional Wireless Power Transfer. Arab J Sci Eng 49, 6577–6586 (2024). https://doi.org/10.1007/s13369-023-08346-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08346-y

Keywords

Navigation