Skip to main content

Advertisement

Log in

System Identification and Control Design of a Wireless Charging Transfer System with Double-Sided LCC Converter

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

A Correction to this article was published on 02 June 2021

This article has been updated

Abstract

Increasing production of electric vehicles (EVs) and the challenge of charging these types of vehicles have been one of the most important research topics in the current century. Due to the low-battery energy density of EVs (compared to fuel) as well as the long time required to charge EVs, wireless power transfer (WPT) technology is an interesting topic researched in recent years. The WPT system in EVs can be studied in both static and dynamic scenarios. In this study, symmetrical circular couplers are first presented as system magnetic couplers and their magnetic calculations are analyzed using finite element method. Then, a new approach is proposed to design the power electronic circuits of the WPT, including a double-sided LCC compensator, and providing an approximation for calculating the ratio of output to input voltage. This method shows how to select the appropriate values of the passive elements for high system efficiency that can meet the output power and voltage. Firstly, the efficacy of the proposed approach is confirmed by experimental and simulation results. Then, using the input control of inverter MOSFETs through pulse width modulation method and proportional integral controller, the output voltage of the system is kept constant while increasing or decreasing the input voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2:
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Change history

Abbreviations

\(L_{11} ,L_{22}\) :

Self-inductance of transmitter/receiver coupler coils (H)

\(r_{1} ,r_{2}\) :

Resistance of LCC transmitter/receiver compensators (ohm)

\(L_{1} ,L_{2}\) :

Inductance of LCC transmitter/receiver compensators (H)

\(C_{{{\mathrm{P}}1}} ,C_{{{\mathrm{P}}2}}\) :

Parallel capacitance of LCC transmitter/receiver compensators (F)

\(C_{{{\mathrm{S}}1}} ,C_{{{\mathrm{S}}2}}\) :

Series capacitances of LCC transmitter/receiver compensators (F)

\(R_{{\mathrm{P}}} ,R_{{\mathrm{S}}}\) :

Resistance of transmitter/receiver coupler coils (H)

\(R_{{\mathrm{O}}}\) :

Resistance output load (ohm)

\(C_{{\mathrm{O}}}\) :

Capacitance of output load (H)

\(K\) :

Coupling coefficient between two coils

\(M\) :

Mutual inductance between the two coils (H)

\(r{\text{-Internal}}\) :

Wire radius (mm)

\(R{\text{-in-Coil}}\) :

Internal radius of coil (mm)

\(R{\text{-out-Coil}}\) :

External radius of coil (mm)

\(N{\text{-Coil}}\) :

Number of coil turns

\(D{\text{-Ferrite}}\) :

Internal diameter between bars (mm)

\({\text{Width-Ferrite}}\) :

Width of ferrite bars (mm)

\(L{\text{-Ferrite}}\) :

Length of ferrite bars (mm)

\(L{\text{-Alumimium}}\) :

Aluminum length (mm)

\(V_{{\text{in-ac}}}\) :

Voltage of the inverter output (V)

\(V\_{\text{dc}}\) :

Actual voltage value of the DC input power supply (V)

\(V_{{{\text{O}}\_{\text{ac}}}}\) :

Voltage of the load transferred to the pre-rectifier (V)

\(V_{{\mathrm{O}}}\) :

Output voltage (V)

\(Ro\_eq\) :

Resistance of the load transferred to the pre-rectifier (ohm)

\(\omega\) :

Switching angular velocity (rad/s)

\(f\) :

Switching frequency (Hz)

\(D\) :

Duty cycle of the full-wave inverter with PWM control

\(\omega_{1}\) :

Resonant angular velocity of the transmitter side (rad/s)

\(f_{1}\) :

Resonant frequency of the transmitter side (Hz)

\(\omega_{2}\) :

Resonant angular velocity of the receiver side (rad/s)

\(f_{2}\) :

Resonant frequency of the receiver side (Hz)

EV:

Electric vehicle

FEM:

Finite element method

IPT:

Induction power transmission

LCC:

Line commutated converter

PI:

Proportional integral

PWM:

Pulse width modulation

WPT:

Wireless power transfer

References

  1. Navin, N.K.: A multiagent fuzzy reinforcement learning approach for economic power dispatch considering multiple plug-in electric vehicle loads. Arab. J. Sci. Eng. 25, 32 (2021). https://doi.org/10.1007/s13369-020-05153-7

    Article  Google Scholar 

  2. Sedighizadeh, M.; Mohammadpour, A.; Alavi, S.M.M.: A daytime optimal stochastic energy management for EV commercial parking lots by using approximate dynamic programming and hybrid big bang big crunch algorithm. Sustain. Cities Soc. 45, 486–498 (2019). https://doi.org/10.1016/j.scs.2018.12.016

    Article  Google Scholar 

  3. Zhu, Q.; Wang, L.; Guo, Y.; Liao, C.; Li, F.: Applying LCC compensation network to dynamic wireless EV charging system. IEEE Trans. Ind. Electron. 63(10), 6557–6567 (2016). https://doi.org/10.1109/TIE.2016.2529561

    Article  Google Scholar 

  4. Kerid, R.; Bourouina, H.: Analysis of wireless power transfer system with new resonant circuit for high efficiency using perforated capacitors. Arab. J. Sci. Eng. 44(3), 2445–2451 (2019). https://doi.org/10.1007/s13369-018-3579-2

    Article  Google Scholar 

  5. Kim, D.; Abu-Siada, A.; Sutinjo, A.: State-of-the-art literature review of WPT: current limitations and solutions on IPT. Electr. Power Syst. Res. 154, 493–502 (2018). https://doi.org/10.1016/j.epsr.2017.09.018

    Article  Google Scholar 

  6. Yan, Z.; Song, B.; Zhang, Y.; Zhang, K.; Mao, Z.; Hu, Y.: A rotation-free wireless power transfer system with stable output power and efficiency for autonomous underwater vehicles. IEEE Trans. Power Electron. 34(5), 4005–4008 (2019). https://doi.org/10.1109/TPEL.2018.2871316

    Article  Google Scholar 

  7. Sugino, M.; Kondo, H.; Takeda, S.: Linear motion type transfer robot using the wireless power transfer system. In: 2016 International Symposium on Antennas and Propagation (ISAP), 24–28 Oct, pp. 508–509 (2016)

  8. Liao, C.-C.; Huang, M.-S.; Li, Z.-F.; Lin, F.-J.; Wu, W.-T.: Simulation-assisted design of a bidirectional wireless power transfer with circular sandwich coils for E-bike sharing system. IEEE Access 8, 110003–110017 (2020)

    Article  Google Scholar 

  9. Panchal, C.; Stegen, S.; Lu, J.: Review of static and dynamic wireless electric vehicle charging system. Eng. Sci. Technol. Int. J. 21(5), 922–937 (2018)

    Google Scholar 

  10. Mohamed, A.A.; Shaier, A.A.; Metwally, H.; Selem, S.I.: A comprehensive overview of inductive pad in electric vehicles stationary charging. Appl. Energy 262, 114584 (2020)

    Article  Google Scholar 

  11. Subudhi, P.S.; Krithiga, S.: Wireless power transfer topologies used for static and dynamic charging of EV battery: a review. Int. J. Emerg. Electr. Power Syst. 21(1), 1–10 (2020)

  12. Ke, G.; Chen, Q.; Xu, L.; Wong, S.-C.; Chi, K.T.: A model for coupling under coil misalignment for DD pads and circular pads of WPT system. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1–6. IEEE (2016)

  13. Agbinya, J.I.; Mohamed, N.F.A.: Design and study of multi-dimensional wireless power transfer transmission systems and architectures. Int. J. Electr. Power Energy Syst. 63, 1047–1056 (2014)

    Article  Google Scholar 

  14. Kuzey, S.; Balci, S.; Altin, N.: Design and analysis of a wireless power transfer system with alignment errors for electrical vehicle applications. Int. J. Hydrogen Energy 42(28), 17928–17939 (2017)

    Article  Google Scholar 

  15. Shi, Y.; Zhang, Y.; Shen, M.; Fan, Y.; Wang, C.; Wang, M.: Design of a novel receiving structure for wireless power transfer with the enhancement of magnetic coupling. AEU-Int. J. Electron. Commun. 95, 236–241 (2018)

    Article  Google Scholar 

  16. Xu, J.; Xu, Y.; Zhang, Q.: Calculation and analysis of optimal design for wireless power transfer. Comput. Electr. Eng. 80, 106470 (2019)

    Article  Google Scholar 

  17. Fujita, T.; Yasuda, T.; Akagi, H.: A dynamic wireless power transfer system applicable to a stationary system. IEEE Trans. Ind. Appl. 53(4), 3748–3757 (2017)

    Article  Google Scholar 

  18. Li, Z.; Zhu, C.; Jiang, J.; Song, K.; Wei, G.: A 3-kW wireless power transfer system for sightseeing car supercapacitor charge. IEEE Trans. Power Electron. 32(5), 3301–3316 (2016)

    Article  Google Scholar 

  19. Wang, Z., et al.: A novel magnetic coupling mechanism for dynamic wireless charging system for electric vehicles. IEEE Trans. Veh. Technol. 67(1), 124–133 (2017)

    Article  Google Scholar 

  20. Wang, S.; Guo, Y.; Dorrell, D.: Analysis of rectangular EV inductive charging coupler. In: 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 285–291. IEEE (2017)

  21. Li, Y.; Lin, T.; Mai, R.; Huang, L.; He, Z.: Compact double-sided decoupled coils-based WPT systems for high-power applications: analysis, design, and experimental verification. IEEE Trans. Transp. Electrif. 4(1), 64–75 (2017)

    Article  Google Scholar 

  22. Mosammam, B.M.; Mirsalim, M.; Khorsandi, A.: Modelling, analysis, and SS compensation of the tripolar structure of wireless power transfer (WPT) system for EV applications. In: 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), pp. 1–5. IEEE (2020)

  23. Kim, D.-H.; Ahn, D.: Self-tuning LCC inverter using PWM-controlled switched capacitor for inductive wireless power transfer. IEEE Trans. Ind. Electron. 66(5), 3983–3992 (2018)

    Article  Google Scholar 

  24. Kan, T.; Mai, R.; Mercier, P.P.; Mi, C.C.: Design and analysis of a three-phase wireless charging system for lightweight autonomous underwater vehicles. IEEE Trans. Power Electron. 33(8), 6622–6632 (2017)

    Article  Google Scholar 

  25. Zhang, Y.; Wang, L.; Guo, Y.; Tao, C.: Null-coupled magnetic integration for EV wireless power transfer system. IEEE Trans. Transp. Electrif. 5(4), 968–976 (2019)

    Article  Google Scholar 

  26. Lu, F.; Zhang, H.; Hofmann, H.; Mi, C.C.: A dynamic charging system with reduced output power pulsation for electric vehicles. IEEE Trans. Ind. Electron. 63(10), 6580–6590 (2016)

    Article  Google Scholar 

  27. Chen, Y.; Zhang, H.; Shin, C.-S.; Jo, C.-H.; Park, S.-J.; Kim, D.-H.: An efficiency optimization-based asymmetric tuning method of double-sided LCC compensated WPT system for electric vehicles. IEEE Trans. Power Electron. 35(11), 11475–11487 (2020)

    Article  Google Scholar 

  28. Li, S.; Guo, Y.; Tao, C.; Li, F.; Wang, L.; Bo, Q.: Analysis of the input impedance of the rectifier and design of LCC compensation network of the dynamic wireless power transfer system. IET Power Electron. 12(10), 2678–2687 (2019)

    Article  Google Scholar 

  29. Zhang, X.; Kan, T.; You, C.; Mi, C.: Modeling and analysis of AC output power factor for wireless chargers in electric vehicles. IEEE Trans. Power Electron. 32(2), 1481–1492 (2016)

    Article  Google Scholar 

  30. Zhang, Y.; Yan, Z.; Kan, T.; Liu, Y.; Mi, C.C.: Modelling and analysis of the distortion of strongly-coupled wireless power transfer systems with SS and LCC–LCC compensations. IET Power Electron. 12(6), 1321–1328 (2019)

    Article  Google Scholar 

  31. Samanta, S.; Rathore, A.K.: A new current-fed CLC transmitter and LC receiver topology for inductive wireless power transfer application: analysis, design, and experimental results. IEEE Trans. Transp. Electrif. 1(4), 357–368 (2015)

    Article  Google Scholar 

  32. Kan, T.; Zhang, Y.; Yan, Z.; Mercier, P.P.; Mi, C.C.: A rotation-resilient wireless charging system for lightweight autonomous underwater vehicles. IEEE Trans. Veh. Technol. 67(8), 6935–6942 (2018)

    Article  Google Scholar 

  33. Lu, F.; Zhang, H.; Hofmann, H.; Mi, C.C.: An inductive and capacitive combined wireless power transfer system with LC-compensated topology. IEEE Trans. Power Electron. 31(12), 8471–8482 (2016)

    Article  Google Scholar 

  34. Khademi, H.R.; Moghaddam, M.S.; Baygi, S.J.M.; Hajizadeh, A.: A new method for an electric vehicle wireless charging system using LCC. Adv. Sci. Technol. Res. J. 13(3), 98–112 (2019)

    Article  Google Scholar 

  35. Liu, H., et al.: Flexible power control for wireless power transmission system with unfixed receiver position. IEEE Access 7, 181767–181777 (2019)

    Article  Google Scholar 

  36. Hu, X.; Wang, Y.; Jiang, Y.; Lei, W.; Dong, X.: Maximum efficiency tracking for dynamic wireless power transfer system using LCC compensation topology. In: 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1992–1996. IEEE (2018)

  37. Jiang, J.; Li, Z.; Song, K.; Song, B.; Dong, S.; Zhu, C.: A cascaded topology and control method for two-phase receivers of dynamic wireless power transfer systems. IEEE Access 8, 47445–47455 (2020)

    Article  Google Scholar 

  38. Ahmad, A.; Alam, M.S.; Rafat, Y.; Shariff, S.: Designing and demonstration of misalignment reduction for wireless charging of autonomous electric vehicle. eTransportation 4, 100052 (2020)

    Article  Google Scholar 

  39. Zhang, B.; Carlson, R.B.; Smart, J.G.; Dufek, E.J.; Liaw, B.: Challenges of future high power wireless power transfer for light-duty electric vehicles––technology and risk management. eTransportation 2, 100012 (2019)

    Article  Google Scholar 

  40. Parvaneh, H.; Dizgah, S.M.; Sedighizadeh, M.; Ardeshir, S.T.: Load frequency control of a multi-area power system by optimum designing of frequency-based PID controller using seeker optimization algorithm. In: 2016 6th Conference on Thermal Power Plants (CTPP), pp. 52–57. IEEE (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Sedighizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siroos, A., Sedighizadeh, M., Afjei, E. et al. System Identification and Control Design of a Wireless Charging Transfer System with Double-Sided LCC Converter. Arab J Sci Eng 46, 9735–9751 (2021). https://doi.org/10.1007/s13369-021-05548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05548-0

Keywords

Navigation