Skip to main content

Advertisement

Log in

Multi-response Optimization of Fiber-Reinforced-Shaped Synthetic Aggregate Concrete

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This research aims to develop a sustainable approach for selecting fiber-reinforced synthetic aggregate concrete (FRSAC) through experiments employing the Taguchi method and multi-criteria decision-making (MCDM) techniques. This study examined the fresh and mechanical behavior, as well as considering the environmental, and economic characteristics of FRSAC theoretically to determine the most environmentally friendly concrete, which may be suitable for various types of applications in concrete. The Taguchi optimization technique considered four functional parameters: binder content, water-to-cement ratio, fiber dosage, and synthetic aggregate replacement in three levels. Synthetic aggregates were manufactured from industrial byproducts in various geometries that may have enhanced aggregate mechanical properties compared to natural aggregates. Using multi-criteria decision-making technique, namely Technique of Ordering Preferences by Similarity to Ideal Solution (TOPSIS), a robust framework was developed and analyzed for FRSAC based on four performance factors including fresh (workability), mechanical (compressive and split tensile strength), and durability (water absorption) properties. Mechanical behavior of FRSAC has been assigned higher weightage in the first case, and the combination of fresh and durability behavior of the FRSAC in second case. In this study, a TOPSIS analysis was conducted in two instances using varying weights to optimize the proportions of fiber-reinforced synthetic aggregates in concrete. The optimal mix (OM1) has resulted in a maximum compressive strength of 55.12 MPa and split tensile strength of 5.50 MPa. Similarly, the optimal mix (OM2) resulted in higher workability of 90 mm and lower water absorption of 3.92%. The anticipated results of the optimal blends were experimentally confirmed. The obtained experimental results have been supported by microstructure analysis of the control and optimal mixes (scanning electron microscopy and X-ray diffraction).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

OPC:

Ordinary Portland cement

GGBFS:

Ground granulated blast furnace slag

MK:

Metakaolin

LP:

Lime powder

SCM:

Supplementary cementitious materials

SP:

Superplasticizer

PPF:

Polypropylene fibers

W/C:

Water-to-cement ratio

SSD:

Saturated surface dry

CM:

Control mixture

OM:

Optimized mixture

MCDM:

Multi-criteria decision-making

TOPSIS:

Technique of Ordering Preferences by Similarity to Ideal Solution

OA:

Orthogonal array

ANOVA:

Analysis of variance

S/N ratio:

Signal-to-noise ratio

NAC:

Natural aggregate concrete

SAC:

Synthetic aggregate concrete

FRSAC:

Fiber-reinforced synthetic aggregate concrete

NA:

Natural aggregates

SA:

Synthetic aggregates

C–S–H:

Calcium silicate hydrate

C–A–H:

Calcium aluminate hydrate

CH:

Calcium hydroxide

SEM:

Scanning electron microscope

EDX:

Energy-dispersive X-ray spectroscopy

XRD:

X-ray diffraction

RMR:

Raw material ratio

References

  1. Dong, B.; Chen, C.; Wei, G.; Fang, G.; Wu, K.; Wang, Y.: Fly ash-based artificial aggregates synthesized through alkali-activated cold-bonded pelletization technology. Constr. Build. Mater. 344, 128268 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128268

    Article  Google Scholar 

  2. Alqarni, A.S.; Albidah, A.; Abbas, H.; Almusallam, T.; Al-Salloum, Y.: Concrete performance produced using recycled construction and by-product industrial waste coarse aggregates. Materials (Basel). (2022). https://doi.org/10.3390/ma15248985

    Article  Google Scholar 

  3. Risdanareni, P.; Schollbach, K.; Wang, J.; De Belie, N.: The effect of NaOH concentration on the mechanical and physical properties of alkali activated fly ash-based artificial lightweight aggregate. Constr. Build. Mater. 259, 119832 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119832

    Article  Google Scholar 

  4. Xu, L.Y.; Qian, L.P.; Huang, B.T.; Dai, J.G.: Development of artificial one-part geopolymer lightweight aggregates by crushing technique. J. Clean. Prod. 315, 128200 (2021). https://doi.org/10.1016/j.jclepro.2021.128200

    Article  Google Scholar 

  5. Agrawal, U.S.; Wanjari, S.P.; Naresh, D.N.: Impact of replacement of natural river sand with geopolymer fly ash sand on hardened properties of concrete. Constr. Build. Mater. 209, 499–507 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.134

    Article  Google Scholar 

  6. Qian, L.P.; Xu, L.Y.; Alrefaei, Y.; Wang, T.; Ishida, T.; Dai, J.G.: Artificial alkali-activated aggregates developed from wastes and by-products: a state-of-the-art review. Resour. Conserv. Recycl. 177, 105971 (2022). https://doi.org/10.1016/j.resconrec.2021.105971

    Article  Google Scholar 

  7. Jian, S.M.; Wu, B.; Hu, N.: Environmental impacts of three waste concrete recycling strategies for prefabricated components through comparative life cycle assessment. J. Clean. Prod. (2021). https://doi.org/10.1016/j.jclepro.2021.129463

    Article  Google Scholar 

  8. Singh Chouhan, H.; Kalla, P.; Nagar, R.; Kumar Gautam, P.: Influence of dimensional stone waste on mechanical and durability properties of mortar: a review. Constr. Build. Mater. 227, 116662 (2019). https://doi.org/10.1016/j.conbuildmat.2019.08.043

    Article  Google Scholar 

  9. Souza, M.M.; Anjos, M.A.S.; Sá, M.V.V.A.; Souza, N.S.L.: Developing and classifying lightweight aggregates from sewage sludge and rice husk ash. Case Stud. Constr. Mater. 12, e00340 (2020). https://doi.org/10.1016/j.cscm.2020.e00340

    Article  Google Scholar 

  10. Ul Rehman, M.; Rashid, K.; Ul Haq, E.; Hussain, M.; Shehzad, N.: Physico-mechanical performance and durability of artificial lightweight aggregates synthesized by cementing and geopolymerization. Constr. Build. Mater. 232, 117290 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117290

    Article  Google Scholar 

  11. Vignesh, R.: New insights into the production of sustainable synthetic aggregates and their microstructural evaluation. 73, (2023)

  12. Assi, L.N.; Deaver, E.; Elbatanouny, M.K.; Ziehl, P.: Investigation of early compressive strength of fly ash-based geopolymer concrete. Constr. Build. Mater. 112, 807–815 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.008

    Article  Google Scholar 

  13. Campos, H.F.; Klein, N.S.; Marques Filho, J.: Proposed mix design method for sustainable high-strength concrete using particle packing optimization. J. Clean. Prod. 265, 121907 (2020). https://doi.org/10.1016/j.jclepro.2020.121907

    Article  Google Scholar 

  14. Upshaw, M.; Cai, C.S.: Feasibility study of MK-based geopolymer binder for RAC applications: effects of silica fume and added CaO on compressive strength of mortar samples. Case Stud. Constr. Mater. 14, e00500 (2021). https://doi.org/10.1016/j.cscm.2021.e00500

    Article  Google Scholar 

  15. Uğurlu, A.İ; Karakoç, M.B.; Özcan, A.: Effect of binder content and recycled concrete aggregate on freeze-thaw and sulfate resistance of GGBFS based geopolymer concretes. Constr. Build. Mater. (2021). https://doi.org/10.1016/j.conbuildmat.2021.124246

    Article  Google Scholar 

  16. Ganesh, A.C.; Muthukannan, M.: Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. J. Clean. Prod. 282, 124543 (2021). https://doi.org/10.1016/j.jclepro.2020.124543

    Article  Google Scholar 

  17. Authority, C.E.: Report on fly ash generation at coal/lignite based thermal power stations and its utilization in the country for the year 2014–15. Cent. Electr. Auth. New Delhi. 1–50 (2016)

  18. Sakulich, A.R.: Reinforced geopolymer composites for enhanced material greenness and durability. Sustain. Cities Soc. 1, 195–210 (2011). https://doi.org/10.1016/j.scs.2011.07.009

    Article  Google Scholar 

  19. Berndt, M.L.: Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Constr. Build. Mater. 23, 2606–2613 (2009). https://doi.org/10.1016/j.conbuildmat.2009.02.011

    Article  Google Scholar 

  20. Kamath, M.; Prashant, S.; Kumar, M.: Micro-characterisation of alkali activated paste with fly ash-GGBS-metakaolin binder system with ambient setting characteristics. Constr. Build. Mater. 277, 122323 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122323

    Article  Google Scholar 

  21. Huseien, G.F.; Mirza, J.; Ismail, M.; Ghoshal, S.K.; Ariffin, M.A.M.: Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar. Ain Shams Eng. J. 9, 1557–1566 (2018). https://doi.org/10.1016/j.asej.2016.11.011

    Article  Google Scholar 

  22. Vignesh, R.; Rahim, A.A.: Mechanical and microstructural properties of quaternary binder system containing OPC-GGBS-Metakaolin-Lime. Mater. Today Proc. 64, 970–975 (2022). https://doi.org/10.1016/j.matpr.2022.05.074

    Article  Google Scholar 

  23. Nepomuceno, M.C.S.; Pereira-De-Oliveira, L.A.; Lopes, S.M.R.; Franco, R.M.C.: Maximum coarse aggregate’s volume fraction in self-compacting concrete for different flow restrictions. Constr. Build. Mater. 113, 851–856 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.143

    Article  Google Scholar 

  24. Poon, C.S.; Kou, S.C.; Lam, L.: Use of recycled aggregates in molded concrete bricks and blocks. Constr. Build. Mater. 16, 281–289 (2002). https://doi.org/10.1016/S0950-0618(02)00019-3

    Article  Google Scholar 

  25. Talamona, D.; Hai Tan, K.: Properties of recycled aggregate concrete for sustainable urban built environment. J. Sustain. Cem. Mater. 1, 202–210 (2012). https://doi.org/10.1080/21650373.2012.754571

    Article  Google Scholar 

  26. Satpathy, H.P.; Patel, S.K.; Nayak, A.N.: Development of sustainable lightweight concrete using fly ash cenosphere and sintered fly ash aggregate. Constr. Build. Mater. 202, 636–655 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.034

    Article  Google Scholar 

  27. Ali, B.; Qureshi, L.A.: Influence of glass fibers on mechanical and durability performance of concrete with recycled aggregates. Constr. Build. Mater. 228, 116783 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116783

    Article  Google Scholar 

  28. Dong, J.F.; Wang, Q.Y.; Guan, Z.W.: Material properties of basalt fibre reinforced concrete made with recycled earthquake waste. Constr. Build. Mater. 130, 241–251 (2017). https://doi.org/10.1016/j.conbuildmat.2016.08.118

    Article  Google Scholar 

  29. Das, C.S.; Dey, T.; Dandapat, R.; Mukharjee, B.B.; Kumar, J.: Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete. Constr. Build. Mater. 189, 649–659 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.036

    Article  Google Scholar 

  30. da Silva Alves, L.C.; dos Reis Ferreira, R.A.; Bellini Machado, L.; de Castro Motta, L.A.: Optimization of metakaolin-based geopolymer reinforced with sisal fibers using response surface methology. Ind. Crops Prod. (2019). https://doi.org/10.1016/j.indcrop.2019.111551

    Article  Google Scholar 

  31. Sultana, N.; Hossain, S.M.Z.; Alam, M.S.; Hashish, M.M.A.; Islam, M.S.: An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete. Constr. Build. Mater. 243, 118216 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118216

    Article  Google Scholar 

  32. Qureshi, L.A.; Ali, B.; Ali, A.: Combined effects of supplementary cementitious materials (silica fume, GGBS, fly ash and rice husk ash) and steel fiber on the hardened properties of recycled aggregate concrete. Constr. Build. Mater. 263, 120636 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120636

    Article  Google Scholar 

  33. Liu, Z.; Yuan, X.; Zhao, Y.; Chew, J.W.; Wang, H.: Concrete waste-derived aggregate for concrete manufacture. J. Clean. Prod. 338, 130637 (2022). https://doi.org/10.1016/j.jclepro.2022.130637

    Article  Google Scholar 

  34. Hossain, F.M.Z.; Shahjalal, M.; Islam, K.; Tiznobaik, M.; Alam, M.S.: Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber. Constr. Build. Mater. 225, 983–996 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.245

    Article  Google Scholar 

  35. Teimortashlu, E.; Dehestani, M.; Jalal, M.: Application of Taguchi method for compressive strength optimization of tertiary blended self-compacting mortar. Constr. Build. Mater. 190, 1182–1191 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.165

    Article  Google Scholar 

  36. Panagiotopoulou, C.; Tsivilis, S.; Kakali, G.: Application of the Taguchi approach for the composition optimization of alkali activated fly ash binders. Constr. Build. Mater. 91, 17–22 (2015). https://doi.org/10.1016/j.conbuildmat.2015.05.005

    Article  Google Scholar 

  37. Dave, S.V.; Bhogayata, A.; Arora, N.K.: Mix design optimization for fresh, strength and durability properties of ambient cured alkali activated composite by Taguchi method. Constr. Build. Mater. 284, 122822 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122822

    Article  Google Scholar 

  38. Ozbay, E.; Oztas, A.; Baykasoglu, A.; Ozbebek, H.: Investigating mix proportions of high strength self compacting concrete by using Taguchi method. Constr. Build. Mater. 23, 694–702 (2009). https://doi.org/10.1016/j.conbuildmat.2008.02.014

    Article  Google Scholar 

  39. Güneyisi, E.; Gesoǧlu, M.; Algin, Z.; Mermerdaş, K.: Optimization of concrete mixture with hybrid blends of metakaolin and fly ash using response surface method. Compos. Part B Eng. 60, 707–715 (2014). https://doi.org/10.1016/j.compositesb.2014.01.017

    Article  Google Scholar 

  40. Li, Q.; Cai, L.; Fu, Y.; Wang, H.; Zou, Y.: Fracture properties and response surface methodology model of alkali-slag concrete under freeze-thaw cycles. Constr. Build. Mater. 93, 620–626 (2015). https://doi.org/10.1016/j.conbuildmat.2015.06.037

    Article  Google Scholar 

  41. Bektas, F.; Bektas, B.A.: Analyzing mix parameters in ASR concrete using response surface methodology. Constr. Build. Mater. 66, 299–305 (2014). https://doi.org/10.1016/j.conbuildmat.2014.05.055

    Article  Google Scholar 

  42. Mohammed, B.S.; Fang, O.C.; Anwar Hossain, K.M.; Lachemi, M.: Mix proportioning of concrete containing paper mill residuals using response surface methodology. Constr. Build. Mater. 35, 63–68 (2012). https://doi.org/10.1016/j.conbuildmat.2012.02.050

    Article  Google Scholar 

  43. Awolusi, T.F.; Oke, O.L.; Akinkurolere, O.O.; Sojobi, A.O.: Application of response surface methodology: predicting and optimizing the properties of concrete containing steel fibre extracted from waste tires with limestone powder as filler. Case Stud. Constr. Mater. (2019). https://doi.org/10.1016/j.cscm.2018.e00212

    Article  Google Scholar 

  44. El-mir, A.: Development and optimization of geopolymers made with desert dune sand and blast furnace slag (2022)

  45. El-mir, A.; Hwalla, J.; El-hassan, H.; Assaad, J.J.; El-dieb, A.: Valorization of waste perlite powder in geopolymer composites. Constr. Build. Mater. 368, 130491 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130491

    Article  Google Scholar 

  46. Chokkalingam, P.; El-hassan, H.; El-dieb, A.: Multi-response optimization of ceramic waste geopolymer concrete using BWM and TOPSIS- based taguchi methods. J. Mater. Res. Technol. 21, 4824–4845 (2022). https://doi.org/10.1016/j.jmrt.2022.11.089

    Article  Google Scholar 

  47. Tansel, Y.; Emir, H.Ş: A TOPSIS-based Taguchi optimization to determine optimal mixture proportions of the high strength self-compacting concrete. Chemometr. Intell. Lab. Syst. 125, 18–32 (2013). https://doi.org/10.1016/j.chemolab.2013.03.012

    Article  Google Scholar 

  48. Uygunog, T.: Multi-response optimization of polymer blended concrete: a TOPSIS based Taguchi application ß ims. Materials 117, 251–262 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.027

    Article  Google Scholar 

  49. Slebi-acevedo, C.J.; Pascual-muñoz, P.; Lastra-gonz, P.; Castro-fresno, D.: Multi-response optimization of porous asphalt mixtures reinforced with aramid and polyolefin fibers employing the CRITIC-TOPSIS based on Taguchi methodology. Materials 12(22), 3789 (2019)

    Article  Google Scholar 

  50. Anwar, F.H.; El-hassan, H.; Hamouda, M.; El-mir, A.; Mohammed, S.: Optimization of pervious geopolymer concrete using TOPSIS-based Taguchi method. Sustainability 14(14), 8767 (2022)

    Article  Google Scholar 

  51. Barı, H.K.; Yarta, A.: A TOPSIS-based Taguchi design to investigate optimum mixture proportions of graphene oxide powder synthesized by hummers method. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-018-3184-4

    Article  Google Scholar 

  52. Çakır, Ö.; Dilbas, H.: Durability properties of treated recycled aggregate concrete: effect of optimized ball mill method. Constr. Build. Mater. (2021). https://doi.org/10.1016/j.conbuildmat.2020.121776

    Article  Google Scholar 

  53. Rashid, K.; Rehman, M.U.; de Brito, J.; Ghafoor, H.: Multi-criteria optimization of recycled aggregate concrete mixes. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.124316

    Article  Google Scholar 

  54. United, T.H.E.; Of, S.: By Authority Of. ASTM C150 Stand. Specif. fot Portl. Cem. 552, 203 (1997)

  55. ASTM C989: Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars. ASTM International i, 2–6 (2005)

  56. ASTM C 618: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2012, www.astm.org. ASTM Int. 1–5 (2014). Doi: https://doi.org/10.1520/C0618

  57. Documents, R., Variations, P., Analyses, R., Analyses, O., Preparation, S., Procedures, G., Methods, R.T., Residue, I., Dioxide, S., Group, A.H., Oxide, F., Pentoxide, P., Dioxide, T., Oxide, Z., Oxide, A., Oxide, C., Oxide, M.: Standard Test Methods for Chemical Analysis of Hydraulic Cement 1 Reproduction authorized per License Agreement with Kathe Hooper. 1–32 (2006)

  58. C128 − 15.pdf

  59. American Society for Testing and Materials: ASTM C 33–99a : Standard Specification for Concrete Aggregates. Annu. B. ASTM Standard i, 1–11 (2010)

  60. Astm:C29/C29M-09: Standard Test Method for Bulk Density (“Unit Weight ”) and Voids in Aggregate. ASTM International, 1–5 (2009). https://doi.org/10.1520/C0029

  61. American Society for Testing and Materials: ASTM C127–15: Standard Test Method for Density, Relative Density ( Specific Gravity ), and Absorption of Coarse Aggregate. ASTM Stand. B. 1–6 (2013)

  62. ASTM C-136: Astm C136. Annu. B. ASTM Stand. i, 1–5 (2014). https://doi.org/10.1520/C0136

  63. BS-812-Part-110-1990-Determine-Aggregate-Crushing-Value.pdf

  64. BS812–112: Impact value Testing aggregates. Br. Stand. Institution. (1990)

  65. ASTM International: C131/C131M-14 Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. Annu. B. Am. Soc. Test. Mater. ASTM Stand. Conshohocken, USA, 04, 5–8 (2014). https://doi.org/10.1520/C0131

  66. ASTM International: Test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate. Annu. B. Am. Soc. Test. Mater. ASTM Stand. Conshohocken, USA, 04, 1–5 (1999). https://doi.org/10.1520/C0088

  67. ASTM C 457/C 457M-12: Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete 1. ASTM International 05, 1–15 (2013)

  68. ASTM C305: Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International 1–3 (2011)

  69. ASTM: Astm C330. Standard Specification for Lightweight Aggregates for Structural Concrete 04, 3–6 (2000). Doi: https://doi.org/10.1520/C0330

  70. Zhao, H.; Sun, W.; Wu, X.; Gao, B.: The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures. J. Clean. Prod. 95, 66–74 (2015). https://doi.org/10.1016/j.jclepro.2015.02.050

    Article  Google Scholar 

  71. Bouali, A.; Grairia, S.; Nettour, D.; Chérait, Y.; Arabi, N.; Montagne, A.; Iost, A.; Chicot, D.: Instrumented indentation based methods to assess fracture toughness (KIC) of self-compacting concrete: influence of water to binder (w/b) ratio and type of concrete. Eng. Fract. Mech. (2022). https://doi.org/10.1016/j.engfracmech.2022.108796

    Article  Google Scholar 

  72. Fallah, S.; Nematzadeh, M.: Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Constr. Build. Mater. 132, 170–187 (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.100

    Article  Google Scholar 

  73. Mo, L.; Yang, S.; Huang, B.; Xu, L.; Feng, S.; Deng, M.: Preparation, microstructure and property of carbonated artificial steel slag aggregate used in concrete. Cem. Concr. Compos. (2020). https://doi.org/10.1016/j.cemconcomp.2020.103715

    Article  Google Scholar 

  74. ASTM: C 143/C 143M – 03 Standard Test Method for Slump of Hydraulic-Cement Concrete. Annu. B. ASTM Stand. 1–4 (2003)

  75. ASTM C873/C873M-10: Standard Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds, ASTM International, West Conshohocken, PA, 2010, www.astm.org. 65, 1–4 (2010)

  76. American Society for Testing and Materials: Astm C39/C39M. Standard Test Method Compressive Strength Cylind. Concr. Specimens. 04, 1–5 (2001)

  77. ASTM International: Astm C496/C496M. ASTM Standard B. 545–545–3 (2008)

  78. Test, C.C., Drilled, T., Ag-, C., Test, C.C., Concrete, H., Mass, D.: Astm C1585–5. Stand. Test Method Meas. Rate Absorpt. Water by Hydraul. Cem. Concr. 41, 1–6 (2018). Doi: https://doi.org/10.1520/C1585-13.2

  79. Avşar, Y.E.; Cihan, M.T.: Multi-response optimization of mechanical properties of alkali-activated mortars. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-07957-9

    Article  Google Scholar 

  80. Zhang, Y.; Sun, X.; Zhu, X.; Xiao, J.: Multi-criteria optimization of concrete mixes incorporating cenosphere waste and multi-minerals. J. Clean. Prod. (2022). https://doi.org/10.1016/j.jclepro.2022.133102

    Article  Google Scholar 

  81. Alqahtani, F.K.; Ghataora, G.; Dirar, S.; Khan, M.I.; Zafar, I.: Experimental study to investigate the engineering and durability performance of concrete using synthetic aggregates. Constr. Build. Mater. 173, 350–358 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.018

    Article  Google Scholar 

  82. Verian, K.P.; Ashraf, W.; Cao, Y.: Properties of recycled concrete aggregate and their influence in new concrete production. Resour. Conserv. Recycl. 133, 30–49 (2018). https://doi.org/10.1016/j.resconrec.2018.02.005

    Article  Google Scholar 

  83. Mefteh, H.; Kebaïli, O.; Oucief, H.; Berredjem, L.; Arabi, N.: Influence of moisture conditioning of recycled aggregates on the properties of fresh and hardened concrete. J. Clean. Prod. 54, 282–288 (2013). https://doi.org/10.1016/j.jclepro.2013.05.009

    Article  Google Scholar 

  84. Alhozaimy, A.M.: Effect of absorption of limestone aggregates on strength and slump loss of concrete. Cem. Concr. Compos. 31, 470–473 (2009). https://doi.org/10.1016/j.cemconcomp.2009.04.010

    Article  Google Scholar 

  85. Nath, P.; Sarker, P.K.: Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 66, 163–171 (2014). https://doi.org/10.1016/j.conbuildmat.2014.05.080

    Article  Google Scholar 

  86. Smirnova, O.: Concrete mixtures with high-workability for ballastless slab tracks. J. King Saud Univ. Eng. Sci. 29, 381–387 (2017). https://doi.org/10.1016/j.jksues.2017.06.004

    Article  Google Scholar 

  87. Ahmmad, R.; Jumaat, M.Z.; Alengaram, U.J.; Bahri, S.; Rehman, M.A.; Hashim, H.: Bin: performance evaluation of palm oil clinker as coarse aggregate in high strength lightweight concrete. J. Clean. Prod. 112, 566–574 (2016). https://doi.org/10.1016/j.jclepro.2015.08.043

    Article  Google Scholar 

  88. Zhang, B.; Poon, C.S.: Use of furnace bottom ash for producing lightweight aggregate concrete with thermal insulation properties. J. Clean. Prod. 99, 94–100 (2015). https://doi.org/10.1016/j.jclepro.2015.03.007

    Article  Google Scholar 

  89. Akçaözoǧlu, S.; Akçaözoǧlu, K.; Atiş, C.D.: Thermal conductivity, compressive strength and ultrasonic wave velocity of cementitious composite containing waste PET lightweight aggregate (WPLA). Compos. Part B Eng. 45, 721–726 (2013). https://doi.org/10.1016/j.compositesb.2012.09.012

    Article  Google Scholar 

  90. Xie, J.; Huang, L.; Guo, Y.; Li, Z.; Fang, C.; Li, L.; Wang, J.: Experimental study on the compressive and flexural behaviour of recycled aggregate concrete modified with silica fume and fibres. Constr. Build. Mater. 178, 612–623 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.136

    Article  Google Scholar 

  91. Dilbas, H.; Şimşek, M.; Çakir, Ö.: An investigation on mechanical and physical properties of recycled aggregate concrete (RAC) with and without silica fume. Constr. Build. Mater. 61, 50–59 (2014). https://doi.org/10.1016/j.conbuildmat.2014.02.057

    Article  Google Scholar 

  92. Duan, P.; Shui, Z.; Chen, W.; Shen, C.: Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Constr. Build. Mater. 44, 1–6 (2013). https://doi.org/10.1016/j.conbuildmat.2013.02.075

    Article  Google Scholar 

  93. Elsharief, A.; Cohen, M.D.; Olek, J.: Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone. Cem. Concr. Res. 33, 1837–1849 (2003). https://doi.org/10.1016/S0008-8846(03)00205-9

    Article  Google Scholar 

  94. Lv, J.; Zhou, T.; Du, Q.; Wu, H.: Effects of rubber particles on mechanical properties of lightweight aggregate concrete. Constr. Build. Mater. 91, 145–149 (2015). https://doi.org/10.1016/j.conbuildmat.2015.05.038

    Article  Google Scholar 

  95. Sengul, O.; Azizi, S.; Karaosmanoglu, F.; Tasdemir, M.A.: Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 43, 671–676 (2011). https://doi.org/10.1016/j.enbuild.2010.11.008

    Article  Google Scholar 

  96. Zhang, X.G., Kuang, X.M., Yang, J.H., Wang, S.R.: 2017-1-10.Pdf. 17, 85–94 (2017)

  97. Wu, F.; Liu, C.; Sun, W.; Zhang, L.; Ma, Y.: Mechanical and creep properties of concrete containing apricot shell lightweight aggregate. KSCE J. Civ. Eng. 23, 2948–2957 (2019). https://doi.org/10.1007/s12205-019-0738-2

    Article  Google Scholar 

  98. Yang, S.; Yue, X.; Liu, X.; Tong, Y.: Properties of self-compacting lightweight concrete containing recycled plastic particles. Constr. Build. Mater. 84, 444–453 (2015). https://doi.org/10.1016/j.conbuildmat.2015.03.038

    Article  Google Scholar 

  99. Zhang, L.; Mo, K.H.; Yap, S.P.; Gencel, O.; Ling, T.C.: Mechanical strength, water resistance and drying shrinkage of lightweight hemihydrate phosphogypsum-cement composite with ground granulated blast furnace slag and recycled waste glass. Constr. Build. Mater. 345, 128232 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128232

    Article  Google Scholar 

  100. Hsie, M.; Tu, C.; Song, P.S.: Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng. A 494, 153–157 (2008). https://doi.org/10.1016/j.msea.2008.05.037

    Article  Google Scholar 

  101. Aslam, M.; Shafigh, P.; Alizadeh Nomeli, M.; Zamin Jumaat, M.: Manufacturing of high-strength lightweight aggregate concrete using blended coarse lightweight aggregates. J. Build. Eng. 13, 53–62 (2017). https://doi.org/10.1016/j.jobe.2017.07.002

    Article  Google Scholar 

  102. He, W.; Kong, X.; Fu, Y.; Zhou, C.; Zheng, Z.: Experimental investigation on the mechanical properties and microstructure of hybrid fiber reinforced recycled aggregate concrete. Constr. Build. Mater. 261, 120488 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120488

    Article  Google Scholar 

  103. Bekkeri, G.B.; Shetty, K.K.; Nayak, G.: Synthesis of artificial aggregates and their impact on performance of concrete: a review. J. Mater. Cycles Waste Manag. 25, 1988–2011 (2023). https://doi.org/10.1007/s10163-023-01713-9

    Article  Google Scholar 

  104. Piyaphanuwat, R.; Asavapisit, S.: Utilization ceramic wastes from porcelain ceramic industry in lightweight aggregate concrete. Int. J. Environ. Sci. Dev. 8, 342–346 (2017). https://doi.org/10.18178/ijesd.2017.8.5.975

    Article  Google Scholar 

  105. Wongkvanklom, A.; Posi, P.; Khotsopha, B.; Ketmala, C.; Pluemsud, N.; Lertnimoolchai, S.; Chindaprasirt, P.: Structural lightweight concrete containing recycled lightweight concrete aggregate. KSCE J. Civ. Eng. 22, 3077–3084 (2018). https://doi.org/10.1007/s12205-017-0612-z

    Article  Google Scholar 

  106. Myers, J.L.; Well, A.D.; Lorch, R.F.: Research Design and Statistical Analysis, 3rd edn. Routledge, London (2010)

    Google Scholar 

  107. ASTM C1723 − 10: Standard guide for examination of hardened concrete using scanning electron microscopy. Annu. B. ASTM Stand. (2006). Doi: https://doi.org/10.1520/C1723-10.Copyright

  108. Karthik, A.; Sudalaimani, K.; Vijayakumar, C.T.; Saravanakumar, S.S.: Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag based self cured geopolymer mortars. J. Hazard. Mater. 361, 56–63 (2019). https://doi.org/10.1016/j.jhazmat.2018.08.078

    Article  Google Scholar 

  109. Chen, K.; Wu, D.; Yi, M.; Cai, Q.; Zhang, Z.: Mechanical and durability properties of metakaolin blended with slag geopolymer mortars used for pavement repair. Constr. Build. Mater. 281, 122566 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122566

    Article  Google Scholar 

  110. Saxena, S.; Tembhurkar, A.R.: Developing biotechnological technique for reuse of wastewater and steel slag in bio-concrete. J. Clean. Prod. 229, 193–202 (2019). https://doi.org/10.1016/j.jclepro.2019.04.363

    Article  Google Scholar 

  111. Huang, C.H.; Wu, C.H.; Lin, S.K.; Yen, T.: Effect of slag particle size on fracture toughness of concrete. Appl. Sci. (2019). https://doi.org/10.3390/app9040805

    Article  Google Scholar 

  112. Binici, H.; Aksogan, O.; Cagatay, I.H.; Tokyay, M.; Emsen, E.: The effect of particle size distribution on the properties of blended cements incorporating GGBFS and natural pozzolan (NP). Powder Technol. 177, 140–147 (2007). https://doi.org/10.1016/j.powtec.2007.03.033

    Article  Google Scholar 

  113. Miller, S.A.; Horvath, A.; Monteiro, P.J.M.: Impacts of booming concrete production on water resources worldwide. Nat. Sustain. 1, 69–76 (2018). https://doi.org/10.1038/s41893-017-0009-5

    Article  Google Scholar 

  114. Deebika, P.; Saravanakumar, M.P.: Utilization of RO rejects and waste aluminum scraps for hydrogen generation. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.06.015

    Article  Google Scholar 

  115. Varshney, H.; Khan, R.A.; Khan, I.K.: Sustainable use of different wastewater in concrete construction: a review. J. Build. Eng. (2021). https://doi.org/10.1016/j.jobe.2021.102411

    Article  Google Scholar 

  116. Saxena, P.; Pagone, E.; Salonitis, K.; Jolly, M.R.: Sustainability metrics for rapid manufacturing of the sand casting moulds: a multi-criteria decision-making algorithm-based approach. J. Clean. Prod. (2021). https://doi.org/10.1016/j.jclepro.2021.127506

    Article  Google Scholar 

  117. Meddah, M.S.; Ismail, M.A.; El-Gamal, S.; Fitriani, H.: Performances evaluation of binary concrete designed with silica fume and metakaolin. Constr. Build. Mater. 166, 400–412 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.138

    Article  Google Scholar 

  118. Samad, S.; Shah, A.: Role of binary cement including supplementary cementitious material (SCM), in production of environmentally sustainable concrete: a critical review. Int. J. Sustain. Built Environ. 6, 663–674 (2017). https://doi.org/10.1016/j.ijsbe.2017.07.003

    Article  Google Scholar 

  119. Mukherjee, A.; Sumit, D.; Dhiman, V.K.; Srivastava, P.; Kumar, A.: Intellectual tool to compute embodied energy and carbon dioxide emission for building construction materials. J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/1950/1/012025

    Article  Google Scholar 

  120. Yu, J.; Chen, Y.; Leung, C.K.Y.: Mechanical performance of Strain-Hardening Cementitious Composites (SHCC) with hybrid polyvinyl alcohol and steel fibers. Compos. Struct. 226, 111198 (2019). https://doi.org/10.1016/j.compstruct.2019.111198

    Article  Google Scholar 

  121. Medjigbodo, G.; Rozière, E.; Charrier, K.; Izoret, L.; Loukili, A.: Hydration, shrinkage, and durability of ternary binders containing Portland cement, limestone filler and metakaolin. Constr. Build. Mater. 183, 114–126 (2018). https://doi.org/10.1016/j.conbuildmat.2018.06.138

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Structural and Geotechnical Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, for their continuous support in conducting experiments and providing laboratory facilities and material characterization instrumental facilities used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdul Rahim.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh, R., Rahim, A.A. Multi-response Optimization of Fiber-Reinforced-Shaped Synthetic Aggregate Concrete. Arab J Sci Eng 49, 5027–5054 (2024). https://doi.org/10.1007/s13369-023-08305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08305-7

Keywords

Navigation