Skip to main content
Log in

A Novel Simplified Modeling Approach for VSC-HVDC Links in Performance Analysis of Multi-Machine Systems

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a simplified model of voltage source converter-based high-voltage direct current (VSC-HVDC) link is proposed that is effective in the analysis of multi-machine systems, even when crucial applications of the link are involved. The model is derived by eliminating the DC dynamics, including the converter-related impedances as a part of the AC system transmission network and obtaining the converter currents in a straightforward manner. Case studies are conducted on 4-machine, 10-bus and 16-machine, 68-bus systems to prove the accuracy of the model. The study clearly indicates the model’s ability to reproduce the influence of VSC controllers, impact of variable power levels and effects of multiple HVDC links in a system. It is further verified for significant VSC-HVDC applications. The model is effective at handling frequency support of asynchronous systems and can be applied to VSC-HVDC connected offshore wind farms feeding multi-machine systems. It is demonstrated that the proposed model can be efficiently used for analysis of large AC systems embedded with VSC-HVDC links with lesser modeling complexity and computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jovcic, D.; Ahmed, K.: High-Voltage Direct-Current Transmissions-Converters, Systems and DC grids. Wiley, Hoboken (2015)

    Book  Google Scholar 

  2. Flourentzou, N.; Agelidis, V.G.; Demetriades, G.D.: VSC-based HVDC power transmission systems : an overview. IEEE Trans. Power Electron. 24(23), 592–602 (2009)

    Article  Google Scholar 

  3. Shah, R.; Sanchez, J.C.; Preece, R.; Barnes, M.: Stability and control of mixed AC-DC systems with VSC-HVDC : a review. IET Gener. Transm. Distrib. 12(10), 2207–2219 (2018)

    Article  Google Scholar 

  4. Wang, L.; Thi, M.S.N.: Comparative stability analysis of offshore wind and marine-current farms feeding into a power grid using HVDC links and HVAC line. IEEE Trans. Power Delivery 28(4), 2162–2171 (2013)

    Article  Google Scholar 

  5. Biswal, S.S.; Swain, D.R.; Rout, P.K.: Control of parallel AC voltage source converter high-voltage DC system using an adaptive PI evolutionary-based controller. Arab. J. Sci. Eng. 46, 931–945 (2021)

    Article  Google Scholar 

  6. Kamarposhti, M.A.; Shokouhandeh, H.; Alipur, M.; Colak, I.; Zare, H.; Eguchi, K.: Optimal designing of fuzzy-PID controller in the load-frequency control loop of hydro-thermal power system connected to wind farm by HVDC lines. IEEE Access 10, 63812–63822 (2022)

    Article  Google Scholar 

  7. Acha, E.; Sanchez, P.R.; Jaen, A.D.I.V.; Castro, L.M.; Kazemtabrizi, B.: VSC-FACTS-HVDC Analysis, Modelling and Simulation in Power Grids. Wiley, Hoboken (2019)

    Book  Google Scholar 

  8. Abedin, T.; Lipu, M.S.H.; Hannan, M.A.; Ker, P.J.; Rahman, S.A.; Yaw, C.T.; Tiong, S.K.; Muttaqi, K.M.: Dynamic modeling of HVDC for power system stability assessment: a review, issues, and recommendations. Energies 14(16), 4829 (2021)

    Article  Google Scholar 

  9. Gao, B.; Wang, Y.; Xu, W.: Modeling voltage source converters for harmonic power flow studies. IEEE Trans. Power Delivery 36(6), 3426 (2021)

    Article  Google Scholar 

  10. Hwang, M.S.; Wood, A.R.: Harmonic state-space modelling of a controlled HVdc converter. Electric Power Syst. Res. 124, 65–73 (2015)

    Article  Google Scholar 

  11. Lian, R.K.; Subroto, R.K.; Andrean, V.; Lin, B.H.: Harmonic Modeling of Voltage Source Converters using Basic Numerical Methods. Wiley, Hoboken (2022)

    Book  Google Scholar 

  12. Peralta, J.; Saad, H.; Dennetiere, S.; Mahseredjian, J.: Dynamic Performance of Average-Value Models for Multi-terminal VSC-HVDC Systems. In: IEEE Power and Energy Society General Meeting, 1-8 (2012)

  13. Sakinci, O.C.; Beerten, J.: Generalized dynamic phasor modeling of the MMC for small-signal stability analysis. IEEE Trans. Power Delivery 34(3), 991–1000 (2019)

    Article  Google Scholar 

  14. Lacerda, V.A.; Araujo, E.P.; Mane, M.C.; Gomis-Bellmunt, O.: Phasor modelling approaches and simulation guidelines of voltage-source converters in grid-integration studies. IEEE Access 10, 51826–51838 (2021)

    Article  Google Scholar 

  15. Cole, S.; Beerten, J.; Belmans, R.: Generalized dynamic VSC MTDC model for power system stability studies. IEEE Trans. Power Syst. 25(3), 1655–1662 (2010)

    Article  Google Scholar 

  16. Beerten, J.; Cole, S.; Belmans, R.: Modeling of multi-terminal VSC HVDC systems with distributed DC voltage control. IEEE Trans. Power Syst. 29(1), 34–42 (2014)

    Article  Google Scholar 

  17. Cole, S.; Belmans, R.: A proposal for standard VSC HVDC dynamic models in power system stability studies. Electric Power Syst. Res. 81, 967–973 (2011)

    Article  Google Scholar 

  18. Yao, W.; Wen, J.; He H.; Cheng, S.: Modeling and simulation of VSC-HVDC with dynamic phasors. In: Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 1416-1421 (2008).

  19. Agnihotri, P.; Kulkarni, A.M.; Gole, A.M.; Archer, B.A.; Weekes, T.: A robust wide-area measurement-based damping controller for networks with embedded multiterminal and multiinfeed HVDC links. IEEE Trans. Power Syst. 32(5), 3884–3892 (2017)

    Article  Google Scholar 

  20. Asvapoositkul, S.; Preece, R.: Impact of HVDC dynamic modelling on power system small signal stability assessment. Int. J. Electr. Power Energy Syst. 123, 106327 (2020)

    Article  Google Scholar 

  21. Shewarega, F.; Erlich, I.: Simplified modeling of VSC-HVDC in power system stability studies. IFAC Proc. Vol. 47(3), 9099–9104 (2014)

    Article  Google Scholar 

  22. Jahan, E.; Hazari, Md.R.; Rosyadi, M.; Umemura, A.; Takahashi, R.; Tamura, J.: Simplified Model of HVDC Transmission System Connecting Offshore Wind Farm to Onshore Grid. In: 2017 IEEE Manchester Power Tech, 1-6 (2017).

  23. Van der Meer, A.A.; Rueda-Torres, J.; Faria da Silva, F.; Gibescu, M.; Meijden, M.A.A.M.: Computationally Efficient Transient Stability Modeling of multi-terminal VSC-HVDC. In: IEEE Power and Energy Society General Meeting (PESGM), 1-5 (2016).

  24. Wang, T.; Song, G.; Yin, L.: Reduced-Order Model Of VSC-HVDC Applied to Passive Network Based On Optimal Reduction Algorithm. In: Renewable Power Generation Conference (RPG), 1-8 (2019).

  25. Schauder, C.; Mehta, H.: Vector analysis and control of advanced static VAR compensators. IEE Proc.-C 140(4), 266–272 (1993)

    Google Scholar 

  26. Shen, L.; Barnes, M.; Preece, R.: The effect of VSC-HVDC control on AC system electromechanical oscillations and DC system dynamics. IEEE Trans. Power Delivery 21(3), 1085–1095 (2016)

    Article  Google Scholar 

  27. Kalcon, G.O.; Adam, G.P.; A-Lara, O.; Lo, S.; Uhlen, K.: Small-signal stability analysis of multi-terminal VSC-based DC transmission systems. IEEE Trans. Power Syst. 27(4), 1818–1830 (2012)

    Article  Google Scholar 

  28. Gasca, J.J.S.; Trudnowski, D.J.: Identification of electromechanical modes in power systems. In: IEEE Taskforce Report PES TR 15 (2012).

  29. Ekinci, S.; Izci, D.; Hekimoglu, B.: Implementing the Henry gas solubility optimization algorithm for optimal power system stabilizer design. Electrica 21(2), 250–258 (2021)

    Article  Google Scholar 

  30. Izci, D.: A novel modified arithmetic optimization algorithm for power system stabilizer design. Sigma J. Eng. Nat. Sci. 40(3), 529–541 (2022)

    Google Scholar 

  31. Padiyar, K.R.: Power System Dynamics-Stability and Control. BS Publications, Hyderabad (2002)

    Google Scholar 

  32. Pal, B.; Chaudhuri, B.: Robust Control in Power Systems. Springer, Berlin (2005)

    Google Scholar 

  33. Kundur, P.: Power System Stability and Control. McGraw-Hill, New York (1994)

    Google Scholar 

  34. Heier, S.: Grid Integration Of Wind Energy - Onshore and Offshore Conversion Systems. Wiley, Hoboken (2014)

    Book  Google Scholar 

  35. Wang, C.; Lin, W.; Le, X.: Modelling of a PMSG Wind Turbine with Autonomous Control. In: Math. Problems Eng. J., Vol. 2014, (2014).

  36. Vargas, M.J.M.; Lorente, D.G.; Rabaza, O.; Alameda-Hernandez, E.: Aggregated models of permanent magnet synchronous generators wind farms. Renewable Energy 83, 1–12 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A

Appendix A

Table 11 provides the controller data of the VSC-HVDC link, and Table 12 provides the aggregated offshore wind farm data.

Table 11 Controller data of VSC-HVDC link
Table 12 Data of the aggregated offshore wind farm

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashmi, Gaonkar, D.N. A Novel Simplified Modeling Approach for VSC-HVDC Links in Performance Analysis of Multi-Machine Systems. Arab J Sci Eng 49, 6405–6417 (2024). https://doi.org/10.1007/s13369-023-08250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08250-5

Keywords

Navigation