Skip to main content
Log in

Simulation of a Solar-Powered Reverse Osmosis System Integrated with Vacuum Membrane Distillation for Desalination Brine Treatment

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study simulates a solar-powered reverse osmosis (RO) system integrated with vacuum membrane distillation (VMD) for desalination brine treatment. The models were simulated using the Simulink package and MATLAB. The water production, energy consumption data, and the energy generation of 100 solar panels for the best location in Saudi Arabia were calculated to demonstrate this integration. The optimal yearly tilt was 28.5°, and the monthly tilts were found to be ranging from 5.2° to 51.9°. utilising the optimal monthly tilts and the sun tracking system resulted in a 6.46% and 40.3% increases in the power generated throughout the year, respectively. The specific electrical energy consumption was found to be ranging from 4.61 to 5.11 kWh/m3 for the RO process, and the specific thermal energy consumption was found to be ranging from 152 to 202.4 kWh/m3 for the VMD. The overall recovery ranged between 43.5 and 48.2% using the RO system and a mere 11.22% to 13.64% using the VMD system, resulting in a combined recovery ranging from 54.7 to 61.9%, with total production ranging from 7595 to 9611 m3 of freshwater per year. The results attained in this study are greatly beneficial to both acadmic and desalination industries and future researchers aiming with the brine treatment process to reach zero liquid discharge (ZLD) or minimal liquid discharge (MLD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hoekstra, A.Y.: Water scarcity challenges to business. Nat. Clim. Chang. 4, 318–320 (2014). https://doi.org/10.1038/nclimate2214

    Article  Google Scholar 

  2. Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B.: Global water pollution and human health. Annu. Rev. Environ. Resour. 35, 109–136 (2010). https://doi.org/10.1146/annurev-environ-100809-125342

    Article  Google Scholar 

  3. Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; Davies, P.M.: Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010). https://doi.org/10.1038/nature09440

    Article  Google Scholar 

  4. Lu, K.J.; Cheng, Z.L.; Chang, J.; Luo, L.; Chung, T.S.: Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies. Desalination 458, 66–75 (2019). https://doi.org/10.1016/j.desal.2019.02.001

    Article  Google Scholar 

  5. Panagopoulos, A.; Haralambous, K.J.: Minimal Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) strategies for wastewater management and resource recovery-Analysis, challenges and prospects. J. Environ. Chem. Eng. 8, 104418 (2020). https://doi.org/10.1016/j.jece.2020.104418

    Article  Google Scholar 

  6. Lotfy, H.R.; Staš, J.; Roubík, H.: Renewable energy powered membrane desalination — review of recent development. Environ. Sci. Pollut. Res. 29, 46552–46568 (2022). https://doi.org/10.1007/s11356-022-20480-y

    Article  Google Scholar 

  7. Esfahani, I.J.; Rashidi, J.; Ifaei, P.; Yoo, C.K.: Efficient thermal desalination technologies with renewable energy systems: a state-of-the-art review. Korean J. Chem. Eng. 33, 351–387 (2016). https://doi.org/10.1007/s11814-015-0296-3

    Article  Google Scholar 

  8. Alawad, S.M.; Khalifa, A.E.; Antar, M.A.; Abido, M.A.: Experimental evaluation of a new compact design multistage water-gap membrane distillation desalination system. Arab. J. Sci. Eng. 46, 12193–12205 (2021). https://doi.org/10.1007/s13369-021-05909-9

    Article  Google Scholar 

  9. Abdelkader, B.A.; Antar, M.A.; Khan, Z.: Nanofiltration as a pretreatment step in seawater desalination: a review. Arab. J. Sci. Eng. 43, 4413–4432 (2018). https://doi.org/10.1007/s13369-018-3096-3

    Article  Google Scholar 

  10. Eltamaly, A.M.; Ali, E.; Bumazza, M.; Mulyono, S.; Yasin, M.: Optimal design of hybrid renewable energy system for a reverse osmosis desalination system in Arar. Saudi Arabia. Arab. J. Sci. Eng. 46, 9879–9897 (2021). https://doi.org/10.1007/s13369-021-05645-0

    Article  Google Scholar 

  11. Ahmad, N.; Sheikh, A.K.; Gandhidasan, P.; Elshafie, M.: Modeling, simulation and performance evaluation of a community scale PVRO water desalination system operated by fixed and tracking PV panels: a case study for Dhahran city. Saudi Arabia. Renew. Energy. 75, 433–447 (2015). https://doi.org/10.1016/j.renene.2014.10.023

    Article  Google Scholar 

  12. Tokui, Y.; Moriguchi, H.; Nishi, Y.: Comprehensive environmental assessment of seawater desalination plants: multistage flash distillation and reverse osmosis membrane types in Saudi Arabia. Desalination 351, 145–150 (2014). https://doi.org/10.1016/j.desal.2014.07.034

    Article  Google Scholar 

  13. Boutikos, P.; Mohamed, E.S.; Mathioulakis, E.; Belessiotis, V.: A theoretical approach of a vacuum multi-effect membrane distillation system. Desalination 422, 25–41 (2017). https://doi.org/10.1016/j.desal.2017.08.007

    Article  Google Scholar 

  14. Missimer, T.M.; Maliva, R.G.: Environmental issues in seawater reverse osmosis desalination: intakes and outfalls. Desalination 434, 198–215 (2018). https://doi.org/10.1016/j.desal.2017.07.012

    Article  Google Scholar 

  15. Kumar, A.; Kant, R.: Samsher: review on spray-assisted solar desalination: concept, performance and modeling. Arab. J. Sci. Eng. 46, 11521–11541 (2021). https://doi.org/10.1007/s13369-021-05846-7

    Article  Google Scholar 

  16. Wae AbdulKadir, W.A.F.; Ahmad, A.L.; Ooi, B.S.: Hydrophobic Montmorillonite/PVDF membrane: experimental investigation of membrane synthesis toward wetting characterization and performance via DCMD. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-07446-5

    Article  Google Scholar 

  17. Al-Kayiem, H.H.; Mohamed, M.M.; Gilani, S.I.U.: State of the art of hybrid solar stills for desalination. Arab. J. Sci. Eng. 48, 5709–5755 (2023). https://doi.org/10.1007/s13369-022-07516-8

    Article  Google Scholar 

  18. Alawad, S.M.; Khalifa, A.E.; Al Hariri, A.H.: Theoretical investigation into the dynamic performance of a solar-powered multistage water gap membrane distillation system. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-07898-3

    Article  Google Scholar 

  19. Son, H.S.; Soukane, S.; Lee, J.; Kim, Y.; Kim, Y.D.; Ghaffour, N.: Towards sustainable circular brine reclamation using seawater reverse osmosis, membrane distillation and forward osmosis hybrids: An experimental investigation. J. Environ. Manage. 293, 112836 (2021). https://doi.org/10.1016/j.jenvman.2021.112836

    Article  Google Scholar 

  20. Sharan, P.; Yoon, T.J.; Thakkar, H.; Currier, R.P.; Singh, R.; Findikoglu, A.T.: Optimal design of multi-stage vacuum membrane distillation and integration with supercritical water desalination for improved zero liquid discharge desalination. J. Clean. Prod. 361, 132189 (2022). https://doi.org/10.1016/j.jclepro.2022.132189

    Article  Google Scholar 

  21. Bamasag, A.; Almatrafi, E.; Alqahtani, T.; Phelan, P.; Ullah, M.; Mustakeem, M.; Obaid, M.; Ghaffour, N.: Recent advances and future prospects in direct solar desalination systems using membrane distillation technology. J. Clean. Prod. 385, 135737 (2023). https://doi.org/10.1016/j.jclepro.2022.135737

    Article  Google Scholar 

  22. Dallas, S.; Sumiyoshi, N.; Kirk, J.; Mathew, K.; Wilmot, N.: Efficiency analysis of the Solarflow - An innovative solar-powered desalination unit for treating brackish water. Renew. Energy. 34, 397–400 (2009). https://doi.org/10.1016/j.renene.2008.05.016

    Article  Google Scholar 

  23. Thomson, M.; Infield, D.: A photovoltaic-powered seawater reverse-osmosis system without batteries. Desalination 153, 1–8 (2003). https://doi.org/10.1016/S0011-9164(03)80004-8

    Article  Google Scholar 

  24. Delgado-Torres, A.M.; García-Rodríguez, L.; del Moral, M.J.: Preliminary assessment of innovative seawater reverse osmosis (SWRO) desalination powered by a hybrid solar photovoltaic (PV) - Tidal range energy system. Desalination. 477, 114247 (2020). https://doi.org/10.1016/j.desal.2019.114247

    Article  Google Scholar 

  25. Herold, D.; Neskakis, A.: A small PV-driven reverse osmosis desalination plant on the island of Gran Canaria. Desalination 137, 285–292 (2001). https://doi.org/10.1016/S0011-9164(01)00230-2

    Article  Google Scholar 

  26. Khayet, M.: Membranes and theoretical modeling of membrane distillation: a review. Adv. Colloid Interface Sci. 164, 56–88 (2011). https://doi.org/10.1016/j.cis.2010.09.005

    Article  Google Scholar 

  27. Mericq, J.P.; Laborie, S.; Cabassud, C.: Vacuum membrane distillation of seawater reverse osmosis brines. Water Res. 44, 5260–5273 (2010). https://doi.org/10.1016/j.watres.2010.06.052

    Article  Google Scholar 

  28. Imdakm, A.O.; Khayet, M.; Matsuura, T.: A Monte Carlo simulation model for vacuum membrane distillation process. J. Memb. Sci. 306, 341–348 (2007). https://doi.org/10.1016/j.memsci.2007.09.021

    Article  MATH  Google Scholar 

  29. Abu-Zeid, M.A.E.R.; Zhang, Y.; Dong, H.; Zhang, L.; Chen, H.L.; Hou, L.: A comprehensive review of vacuum membrane distillation technique. Desalination 356, 1–14 (2015). https://doi.org/10.1016/j.desal.2014.10.033

    Article  Google Scholar 

  30. Karabelas, A.J.; Kostoglou, M.; Koutsou, C.P.: Modeling of spiral wound membrane desalination modules and plants - review and research priorities. Desalination 356, 165–186 (2015). https://doi.org/10.1016/j.desal.2014.10.002

    Article  Google Scholar 

  31. Kaghazchi, T.; Mehri, M.; Ravanchi, M.T.; Kargari, A.: A mathematical modeling of two industrial seawater desalination plants in the Persian Gulf region. Desalination 252, 135–142 (2010). https://doi.org/10.1016/j.desal.2009.10.012

    Article  Google Scholar 

  32. Altaee, A.: Computational model for estimating reverse osmosis system design and performance: Part-one binary feed solution. Desalination 291, 101–105 (2012). https://doi.org/10.1016/j.desal.2012.01.028

    Article  Google Scholar 

  33. Sobana, S.; Panda, R.C.: Review on modelling and control of desalination system using reverse osmosis. Rev. Environ. Sci. Biotechnol. 10, 139–150 (2011). https://doi.org/10.1007/s11157-011-9233-z

    Article  Google Scholar 

  34. Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N.: Reverse osmosis desalination: a state-of-the-art review. Desalination 459, 59–104 (2019). https://doi.org/10.1016/j.desal.2019.02.008

    Article  Google Scholar 

  35. Djebedjian, B.; Gad, H.; Adou Rayan, M.M.; Khaled, I.: Experimental and analytical study of a reverse osmosis desalination plant (Dept.M). MEJ Mansoura Eng. J. 34, 71–92 (2020)

    Article  Google Scholar 

  36. Lu, Y.Y.; Hu, Y.D.; Zhang, X.L.; Wu, L.Y.; Liu, Q.Z.: Optimum design of reverse osmosis system under different feed concentration and product specification. J. Memb. Sci. 287, 219–229 (2007). https://doi.org/10.1016/j.memsci.2006.10.037

    Article  Google Scholar 

  37. Li, M.; Noh, B.: Validation of model-based optimization of brackish water reverse osmosis (BWRO) plant operation. Desalination 304, 20–24 (2012). https://doi.org/10.1016/j.desal.2012.07.029

    Article  Google Scholar 

  38. Anqi, A.E.; Alkhamis, N.; Oztekin, A.: Numerical simulation of brackish water desalination by a reverse osmosis membrane. Desalination 369, 156–164 (2015). https://doi.org/10.1016/j.desal.2015.05.007

    Article  Google Scholar 

  39. Notton, G.; Cristofari, C.; Poggi, P.; Muselli, M.: Calculation of solar irradiance profiles from hourly data to simulate energy systems behaviour. Renew. Energy. 27, 123–142 (2002). https://doi.org/10.1016/S0960-1481(01)00166-5

    Article  Google Scholar 

  40. Hottel, H.C.: A simple model for estimating the transmittance of direct solar radiation through clear atmospheres. Sol. Energy. 18, 129–134 (1976). https://doi.org/10.1016/0038-092X(76)90045-1

    Article  Google Scholar 

  41. Suh, J.; Choi, Y.: Methods for converting monthly total irradiance data into hourly data to estimate electric power production from photovoltaic systems: a comparative study. Sustain (2017). https://doi.org/10.3390/su9071234

    Article  Google Scholar 

  42. Mansour, R.B.; Mateen Khan, M.A.; Alsulaiman, F.A.; Mansour, R.B.: Optimizing the solar PV tilt angle to maximize the power output: a case study for Saudi Arabia. IEEE Access 9, 15914–15928 (2021). https://doi.org/10.1109/ACCESS.2021.3052933

    Article  Google Scholar 

  43. Lovineh, S.G.; Asghari, M.; Rajaei, B.: Numerical simulation and theoretical study on simultaneous effects of operating parameters in vacuum membrane distillation. Desalination 314, 59–66 (2013). https://doi.org/10.1016/j.desal.2013.01.005

    Article  Google Scholar 

  44. Mengual, J.I.; Khayet, M.; Godino, M.P.: Heat and mass transfer in vacuum membrane distillation. Int. J. Heat Mass Transf. 47, 865–875 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2002.09.001

    Article  Google Scholar 

  45. Khayet, M.; Godino, M.P.; Mengual, J.I.: Possibility of nuclear desalination through various membrane distillation configurations: a comparative study. Int. J. Nucl. Desalin. 1, 30–46 (2003). https://doi.org/10.1504/IJND.2003.003441

    Article  Google Scholar 

  46. Xie, Z.; Ng, D.; Hoang, M.; Adnan, S.; Zhang, J.; Duke, M.; Li, J.. De.; Groth, A.; Tun, C.; Gray, S.: Preliminary evaluation for vacuum membrane distillation (VMD) energy requirement. J. Membr. Sci. Res. 2, 207–213 (2016). https://doi.org/10.22079/jmsr.2016.21952

    Article  Google Scholar 

  47. Alkhudhiri, A.; Darwish, N.; Hilal, N.: Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012). https://doi.org/10.1016/j.desal.2011.08.027

    Article  Google Scholar 

  48. Abdallah, S.B.; Frikha, N.; Gabsi, S.: Simulation of solar vacuum membrane distillation unit. Desalination 324, 87–92 (2013). https://doi.org/10.1016/j.desal.2013.06.001

    Article  Google Scholar 

  49. Naidu, G.; Choi, Y.; Jeong, S.; Hwang, T.M.; Vigneswaran, S.: Experiments and modeling of a vacuum membrane distillation for high saline water. J. Ind. Eng. Chem. 20, 2174–2183 (2014). https://doi.org/10.1016/j.jiec.2013.09.048

    Article  Google Scholar 

  50. Zrelli, A.; Chaouachi, B.: Modeling and simulation of a vacuum membrane distillation plant coupled with solar energy and using helical hollow fibers. Brazilian J. Chem. Eng. 36, 1119–1129 (2019). https://doi.org/10.1590/0104-6632.20190363s20180531

    Article  Google Scholar 

  51. Miladi, R.; Frikha, N.; Kheiri, A.; Gabsi, S.: Energetic performance analysis of seawater desalination with a solar membrane distillation. Energy Convers. Manag. 185, 143–154 (2019). https://doi.org/10.1016/j.enconman.2019.02.011

    Article  Google Scholar 

  52. Alsaadi, A.; Francis, L.; Amy, G.; Ghaffour, N.: Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation. J. Memb. Sci. 471, 138–148 (2014). https://doi.org/10.1016/j.memsci.2014.08.005

    Article  Google Scholar 

  53. FilmTec: FilmTecTM Reverse Osmosis Membranes Technical Manual. Water Solut. 7, 211 (2021)

  54. SolarAtlas: “Solar Map.” https://globalsolaratlas.info/download/saudi-arabia.

  55. Megasol: “High Power Solar Panel.” https://www.enfsolar.com/Product/pdf/Crystalline/51f8d419ee215.pdf.

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSUOR3-385-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javed Alam or Mansour Alhoshan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, J., Daoud, O.A., Shukla, A.K. et al. Simulation of a Solar-Powered Reverse Osmosis System Integrated with Vacuum Membrane Distillation for Desalination Brine Treatment. Arab J Sci Eng 48, 16343–16357 (2023). https://doi.org/10.1007/s13369-023-08212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08212-x

Keywords

Navigation