Skip to main content

Advertisement

Log in

Experimental Evaluation of a New Compact Design Multistage Water-Gap Membrane Distillation Desalination System

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Water desalination using the membrane distillation (MD) process is an emerging technique that has the potential for future commercialization. In this study, the performance of a new design multistage water-gap membrane distillation module is experimentally investigated for possible scaling up and commercialization. A new compact design is proposed for enhanced productivity, low energy consumption, and therefore low freshwater production cost. The variations of permeate flux, specific thermal energy consumption, gained output ratio, and production cost with the different operating parameters are studied. Besides, the impacts of having parallel and series flow arrangements among the module stages are investigated. Results showed that operating the multistage system at higher feed temperature increases productivity, reduces the specific energy consumption, and minimizes the water production cost. The parallel flow arrangement is slightly better than the series arrangement in terms of productivity. However, the series flow arrangement is found better in terms of energy efficiency. The best-achieved performance indicators are gained output ratio (GOR) of 0.49, specific thermal energy consumption of 1320 kWh/m3, and water production cost of 6 $/m3, which are very promising findings of the tested compact multistage water-gap MD system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alkhudhiri, A.; Darwish, N.; Hilal, N.: Treatment of high salinity solutions: application of air gap membrane distillation. Desalination 287, 55–60 (2012)

    Article  Google Scholar 

  2. Meindersma, G.W.; Guijt, C.M.; de Haan, A.B.: Desalination and water recycling by air gap membrane distillation. Desalination 187(1–3), 291–301 (2006)

    Article  Google Scholar 

  3. Alklaibi, A.M.; Lior, N.: Membrane-distillation desalination: status and potential. Desalination 171(2), 111–131 (2005)

    Article  Google Scholar 

  4. Banat, F.A.; Simandl, J.: Desalination by membrane distillation: a parametric study. Sep. Sci. Technol. 201–226 (1998)

  5. Mahmoudi, F.; Pishbin, M.E.; Date, A.; Akbarzadeh, A.: A unique permeate gap membrane distillation system for combined fresh water and power production. Energy Procedia 160(2018), 170–177 (2019)

    Article  Google Scholar 

  6. Mahmoudi, F.; Date, A.; Akbarzadeh, A.: Further investigation of simultaneous fresh water production and power generation concept by permeate gap membrane distillation system. J. Memb. Sci. 572(November 2018), 230–245 (2019)

  7. Essalhi, M.; Khayet, M.: Application of a porous composite hydrophobic/hydrophilic membrane in desalination by air gap and liquid gap membrane distillation: a comparative study. Sep. Purif. Technol. 133, 176–186 (2014)

    Article  Google Scholar 

  8. Cheng, L.; Zhao, Y.; Li, P.; Li, W.; Wang, F.: Comparative study of air gap and permeate gap membrane distillation using internal heat recovery hollow fiber membrane module. Desalination, 426(October 2017), 42–49, (2018)

  9. Yazgan-Birgi, P.; Hassan Ali, M.I.; Swaminathan, J.; Lienhard, J.H.; Arafat, H.A.: Computational fluid dynamics modeling for performance assessment of permeate gap membrane distillation. J. Memb. Sci. 568(June), 55–66 (2018)

  10. Gao, L.; Zhang, J.; Gray, S.; De Li, J.: Experimental study of hollow fiber permeate gap membrane distillation and its performance comparison with DCMD and SGMD. Sep. Purif. Technol. 188, 11–23 (2017)

    Article  Google Scholar 

  11. Khalifa, A.E.: Flux enhanced water gap membrane distillation process-circulation of gap water. Sep. Purif. Technol. 231(June 2019), 115938 (2020)

  12. Francis, L.; Ghaffour, N.; Alsaadi, A.A.; Amy, G.L.: Material gap membrane distillation: a new design for water vapor flux enhancement. J. Memb. Sci. 448, 240–247 (2013)

    Article  Google Scholar 

  13. Ugrozov, V.V.; Elkina, I.B.; Nikulin, V.N.; Kataeva, L.I.: Theoretical and experimental research of liquid-gap membrane distillation process in membrane module. Desalination 157(1–3), 325–331 (2003)

    Article  Google Scholar 

  14. Khalifa, A.E.; Alawad, S.M.: Air gap and water gap multistage membrane distillation for water desalination. Desalination 437(November 2017), 175–183 (2018)

  15. Duong, H.C.; Cooper, P.; Nelemans, B.; Cath, T.Y.; Nghiem, L.D.: Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level. Sep. Purif. Technol. 166, 55–62 (2016)

    Article  Google Scholar 

  16. Alkhudhiri, A.; Darwish, N.: Hilal, N.: Membrane distillation: a comprehensive review. Desalination 287(June 2014), 2–18 (2012)

  17. Ruiz-Aguirre, A.; Andrés-Mañas, J.A.; Fernández-Sevilla, J.M.; Zaragoza, G.: Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Sep. Purif. Technol. 205, 212–222 (2018)

    Article  Google Scholar 

  18. Banat, F.; Jwaied, N.; Rommel, M.; Koschikowski, J.; Wieghaus, M.: Performance evaluation of the ‘large SMADES’ autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan. Desalination, 217(1–3), 17–28 (2007)

  19. Banat, F.; Jwaied, N.; Rommel, M.; Koschikowski, J.; Wieghaus, M.: Desalination by a ‘compact SMADES’ autonomous solar-powered membrane distillation unit. Desalination 217(1–3), 29–37 (2007)

    Article  Google Scholar 

  20. Zakrzewska-Trznadel, G.; Harasimowicz, M.; Chmielewski, A.G.: Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation. J. Memb. Sci. 163(2), 257–264 (1999)

  21. Khayet, M.; Mengual, J.I.; Zakrzewska-Trznadel, G.: Direct contact membrane distillation for nuclear desalination, Part II: Experiments with radioactive solutions. Int. J. Nucl. Desalin. 2006 1(4), 435–449 (2005)

  22. Criscuoli, A.; Carnevale, M.C.; Drioli, E.: Evaluation of energy requirements in membrane distillation. Chem. Eng. Process. Process Intensif. 47(7), 1098–1105 (2008)

    Article  Google Scholar 

  23. Wang, X.; Zhang, L.; Yang, H.; Chen, H.: Feasibility research of potable water production via solar-heated hollow fiber membrane distillation system. Desalination 247(1–3), 403–411 (2009)

    Article  Google Scholar 

  24. Raluy, R.G.; Schwantes, R.; Subiela, V.J.; Peñate, B.; Melián, G.; Betancort, J.R.: Operational experience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran Canaria Island (Spain). Desalination 290, 1–13 (2012)

    Article  Google Scholar 

  25. Khayet, M.: Membranes and theoretical modeling of membrane distillation: a review. Adv. Colloid Interface Sci. 164(1–2), 56–88 (2011)

    Article  Google Scholar 

  26. Khayet, M.: Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review). DES 308, 89–101 (2013)

    Article  Google Scholar 

  27. Elsa, A.M.: Integration of humidification-dehumidification desalination and concentrated photovoltaic-thermal collectors: energy and exergy-costing analysis, 424(June), 17–26 (2017)

  28. Kabeel, A.E.; Abou, T.; El-said, E.M.S.: Economic analysis of a small-scale hybrid air HDH-SSF (humidification and dehumidification-water flashing evaporation) desalination plant. Energy 53, 306–311 (2013)

    Article  Google Scholar 

  29. Wang, Y.; Lior, N.: Thermoeconomic analysis of a low-temperature multi-effect thermal desalination system coupled with an absorption heat pump. Energy 36(6), 3878–3887 (2011)

    Article  Google Scholar 

  30. El-Sayed, Y.M.: Designing desalination systems for higher productivity. 134(November 2000), 129–158 (2001)

  31. Zubair, S.M.; Antar, M.A.; Elmutasim, S.M.; Lawal, D.U.: Performance evaluation of humidification-dehumidification (HDH) desalination systems with and without heat recovery options : an experimental and theoretical investigation 436(October 2017), 161–175 (2018)

  32. Ashrafizadeh, S.A.; Amidpour, M.: Exergy analysis of humidification-dehumidification desalination systems using driving forces concept. Desalination 285, 108–116 (2012)

    Article  Google Scholar 

  33. Jamil, M.A.; Elmutasim, S.M.; Zubair, S.M.: Exergo-economic analysis of a hybrid humidification dehumidification reverse osmosis (HDH-RO) system operating under different retrofits. Energy Convers. Manag. 158, 286–297 (2018)

    Article  Google Scholar 

  34. Lawal, D.U., Zubair, S.M., Antar, M.A.: Exergo-economic analysis of humidification-dehumidification (HDH ) desalination systems driven by heat pump (HP), 443(May), 11–25 (2018)

  35. Animasaun, I.L.; Ibraheem, R.O.; Mahanthesh, B.; Babatunde, H.A.: A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin. J. Phys. 60, 676–687 (2019)

    Article  MathSciNet  Google Scholar 

  36. Shah, N.A.; Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018)

    Article  Google Scholar 

  37. Fane, A.G.; Schofield, R.W.; Fell, C.J.D.: The efficient use of energy in membrane distillation. Desalination 64, 231–243 (1987)

    Article  Google Scholar 

  38. Banat, F.; Jwaied, N.: Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units, 220, 566–573 (2008)

  39. Bouguecha, S.; Hamrouni, B.; Dhahbi, M.: Small scale desalination pilots powered by renewable energy sources: case studies. Desalination 183(1–3), 151–165 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support and fund received from the Deanship of Research, King Fahd University of Petroleum & Minerals (KFUPM) under Research Grant # IN171014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atia E. Khalifa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alawad, S.M., Khalifa, A.E., Antar, M.A. et al. Experimental Evaluation of a New Compact Design Multistage Water-Gap Membrane Distillation Desalination System. Arab J Sci Eng 46, 12193–12205 (2021). https://doi.org/10.1007/s13369-021-05909-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05909-9

Keywords

Navigation