Skip to main content
Log in

Machine Learning Regression Algorithms for Shear Strength Prediction of SFRC-DBs: Performance Evaluation and Comparisons

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The objective of this study is to assess the shear strength of Deep Steel Fiber Reinforced Concrete Beams without stirrups (SFRC-DBs) and to forecast the values of such shear strengths using machine learning techniques. To facilitate the design of such complex structural elements, this work generated an up-to-date database of 170 SFRC-DBs, where eleven popular machine learning regression algorithms are evaluated using five common performance metrics. This introduces a comprehensive assessment framework enabling practitioners to develop reliable and efficient data-driven applications for this task. The evaluation process included the multilayer perceptron (MLP), the linear regression, the ridge, the lasso, the elastic net, the decision tree, the random forest (RF), the gradient boosting (GB), the extreme gradient boosting (XGBoost), the AdaBoost, and the k-nearest neighbor. The results reveal that MLP, GB, RF, and XGBoost show superior variance-explaining capabilities within the dataset. Their models can explain more than 86% of the variance in the dependent variable with a Mean Absolute Error of about 25.0, Mean Absolute Percentage Error of nearly or below 20%, Root Mean Square Error of less than 44.5, and R-squared more than 85%. This interesting finding might encourage civil engineers to focus on utilizing and testing these methods for practical shear strength estimate applications, while other regression algorithms might need dataset expansion and/or data engineering to augment future forecasting capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Almasabha, G.; Murad, Y.; Alghossoon, A.; Saleh, E.; Tarawneh, A.: Sustainability of using steel fibers in reinforced concrete deep beams without stirrups. Sustainability. 15(6), 4721 (2023). https://doi.org/10.3390/su15064721

    Article  Google Scholar 

  2. ACI 318: Building code requirements for structural concrete (ACI 318-19) and commentary (ACI 318R-19). In: American Concrete Institute, Farmington Hills, MI (2019)

  3. Dang, T.D.; Tran, D.T.; Nguyen-Minh, L.; Nassif, A.Y.: Shear resistant capacity of steel fibres reinforced concrete deep beams: an experimental investigation and a new prediction model. Structures 33, 2284–2300 (2021)

    Article  Google Scholar 

  4. Almasabha, G.; Chao, S.-H.: A new reinforcement configuration for achieving high-ductility and high-strength rectangular squat structural walls. ACI Struct. J. (2023). https://doi.org/10.14359/51737144

    Article  Google Scholar 

  5. Narayanan, R.; Darwish, Y.S.: Use of steel fibers as shear reinforcement. SJ (1987). https://doi.org/10.14359/2654

    Article  Google Scholar 

  6. Ashour, S.A.; Hasanain, G.S.; Wafa, F.F.: Shear behavior of high-strength fiber reinforced concrete beams. SJ (1992). https://doi.org/10.14359/2946

    Article  Google Scholar 

  7. Kwak, Y.-K.; Eberhard, M.O.; Kim, W.-S.; Kim, J.: Shear strength of steel fiber-reinforced concrete beams without stirrups. Struct. J. (2002). https://doi.org/10.14359/12122

    Article  Google Scholar 

  8. Shahnewaz, M.; Alam, M.S.: Genetic algorithm for predicting shear strength of steel fiber reinforced concrete beam with parameter identification and sensitivity analysis. J. Build. Eng. 29, 101205 (2020). https://doi.org/10.1016/j.jobe.2020.101205

    Article  Google Scholar 

  9. Almasabha, G.; Alshboul, O.; Shehadeh, A.; Almuflih, A.S.: Machine learning algorithm for shear strength prediction of short links for steel buildings. Buildings 12, 775 (2022)

    Article  Google Scholar 

  10. Almasabha, G.: Gene expression model to estimate the overstrength ratio of short links. Structures 37, 528–535 (2022). https://doi.org/10.1016/j.istruc.2022.01.030

    Article  Google Scholar 

  11. Almasabha, G.; Al-Shboul, K.; Shehadeh, A.; Alshboul, O.: Machine learning-based models for predicting the shear strength of synthetic fiber reinforced concrete beams without stirrups. Structures 52, 299–311 (2023). https://doi.org/10.1016/j.istruc.2023.03.170

    Article  Google Scholar 

  12. Almasabha, G.; Tarawneh, A.; Saleh, E.; Alajarmeh, O.: Data-driven flexural stiffness model of FRP-reinforced concrete slender columns. J. Compos. Constr. 26, 04022024 (2022). https://doi.org/10.1061/(ASCE)CC.1943-5614.0001218

    Article  Google Scholar 

  13. Ashour, A.F.; Alvarez, L.F.; Toropov, V.V.: Empirical modeling of shear strength of RC deep beams by genetic programming. Comput. Struct. 81, 331–338 (2003)

    Article  Google Scholar 

  14. Cladera, A.; Marí, A.R.: Shear design procedure for reinforced concrete beams using artificial neural networks. Part I: beams without stirrups. Eng. Struct. 26, 917–926 (2004)

    Article  Google Scholar 

  15. Cladera, A.; Marí, A.R.: Shear design procedure for reinforced concrete beams using artificial neural networks. Part II: beams with stirrups. Eng. Struct. 26, 927–936 (2004)

    Article  Google Scholar 

  16. Lim, T.Y.; Paramasivam, P.; Lee, S.L.: Shear and moment capacity of reinforced steel-fibre-concrete beams. Mag. Concr. Res. 39(140), 148–160 (1987). https://doi.org/10.1680/macr.1987.39.140.148

    Article  Google Scholar 

  17. Mansur, M.A.; Ong, K.C.G.; Paramasivam, P.: Shear strength of fibrous concrete beams without stirrups. J. Struct. Eng. 112(9), 2066–2079 (1986). https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)

    Article  Google Scholar 

  18. Spinella, N.; Colajanni, P.; Mendola, L.L.: Nonlinear analysis of beams reinforced in shear with stirrups and steel fibers. Struct. J. (2012). https://doi.org/10.14359/51683494

    Article  Google Scholar 

  19. Batson, G.; Jenkins, E.; Spatney, R.: Steel fibers as shear reinforcement in beams. J. Proc. 69(10), 640–644 (1972)

    Google Scholar 

  20. Li, V.C.; Ward, R.; Hmaza, A.M.: Steel and synthetic fibers as shear reinforcement. MJ (1992). https://doi.org/10.14359/1822

    Article  Google Scholar 

  21. Adebar, P.; Mindess, S.; Pierre, D.S.; Olund, B.: Shear tests of fiber concrete beams without stirrups. ACI Struct. J. 94(1), 68–76 (1997)

    Google Scholar 

  22. Tahenni, T.; Chemrouk, M.; Lecompte, T.: Effect of steel fibers on the shear behavior of high strength concrete beams. Constr. Build. Mater. 105, 14–28 (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.010

    Article  Google Scholar 

  23. Cho, S.-H.; Kim, Y.-I.: Effects of Steel Fibers on Short Beams Loaded in Shear. ACI Struct. J. 100(6), 765–774 (2003)

    Google Scholar 

  24. Padmarajaiah, S.K.; Ramaswamy, A.: Behavior of fiber-reinforced prestressed and reinforced high-strength concrete beams subjected to shear. Struct. J. (2001). https://doi.org/10.14359/10629

    Article  Google Scholar 

  25. Narayanan, R.; Darwish, Y.S.: Fiber concrete deep beams in shear. Struct. J. (1988). https://doi.org/10.14359/2698

    Article  Google Scholar 

  26. Parmentier, B., Cauberg, N., Vandewalle. L.: Shear Resistance of Macro-Synthetic and Steel Fibre Reinforced Concrete Beams Without Stirrups 12 (2012)

  27. Shin, S.W., Oh, J.G., Ghosh, S.K.: Shear behavior of laboratory-sized high-strength concrete beams reinforced with bars and steel fibers. In: SP-142: Fiber Reinforced Concrete Developments and Innovations. American Concrete Institute (1994)

  28. Xue, X.; Hua, X.; Zhou, J.: Test and prediction of shear strength for the steel fiber–reinforced concrete beams. Adv. Mech. Eng. 11(4), 168781401984055 (2019). https://doi.org/10.1177/1687814019840551

    Article  Google Scholar 

  29. Murty, D.S.R., Venk Atachar Yulu, T.: Fibre reinforced concrete beams subjected to shear force. In: Proceedings of the International Symposium on Fiber Reinforced Concrete, pp. 1.125–1.132. Madras, India (1987)

  30. Chalioris, C.E.; Sfiri, E.F.: Shear performance of steel fibrous concrete beams. Proc. Eng. 14, 2064–2068 (2011). https://doi.org/10.1016/j.proeng.2011.07.259

    Article  Google Scholar 

  31. Lakavath, C., Pidapa, V., Joshi, S.S.: Shear Behavior of Steel Fiber Reinforced Precast Prestressed Concrete Beams 13 (2017)

  32. Jindal, R.L.: Shear and moment capacities of steel fiber reinforced concrete beams. Spec. Publ. 81, 1–16 (1984)

    Google Scholar 

  33. Li, X.; Li, C.; Zhao, M.; Yang, H.; Zhou, S.: Testing and prediction of shear performance for steel fiber reinforced expanded-shale lightweight concrete beams without web reinforcements. Materials 12(10), 1594 (2019). https://doi.org/10.3390/ma12101594

    Article  Google Scholar 

  34. Kang, T.H.-K.; Kim, W.; Kwak, Y.-K.; Hong, S.-G.: Shear testing of steel fiber-reinforced lightweight concrete beams without web reinforcement. Struct. J. (2011). https://doi.org/10.14359/51683212

    Article  Google Scholar 

  35. Garcia, S.; Pereira, A.; Pierott, R.: Shear strength of sand-lightweight concrete deep beams with steel fibers. Struct. J. (2021). https://doi.org/10.14359/51729347

    Article  Google Scholar 

  36. Uomoto, T., Weeraratne, R.K., Furukoshi, H., Fujino, H.: Shear Strength of Reinforced Concrete Beams with Fibre Reinforcement. In: RILEM Symposium on the Developments in Fibre Reinforced Cement and Concrete, vol 2, paper 8.7, pp. 553–562 (1986)

  37. Imam, M., Vandewalle, L., Mortelmans, F.: Shear capacity of steel fiber high-strength concrete beams. In: SP-149: High-Performance Concrete - Proceedings, International Conference Singapore, 1994. American Concrete Institute (1994)

  38. Dupont, D., Vandewalle, L.: Shear capacity of concrete beams containing longitudinal reinforcement and steel fibers. In: SP-216: Innovations in Fiber-Reinforced Concrete for Value. American Concrete Institute (2003)

  39. Zhao, J.; Liang, J.; Chu, L.; Shen, F.: Experimental study on shear behavior of steel fiber reinforced concrete beams with high-strength reinforcement. Materials 11(9), 1682 (2018). https://doi.org/10.3390/ma11091682

    Article  Google Scholar 

  40. Cucchiara, C.; La Mendola, L.; Papia, M.: Effectiveness of stirrups and steel fibres as shear reinforcement. Cement Concr. Compos. 26(7), 777–786 (2004). https://doi.org/10.1016/j.cemconcomp.2003.07.001

    Article  Google Scholar 

  41. Manju, R.; Sathya, S.; Sylviya, B.: Shear strength of high-strength steel fibre reinforced concrete rectangular beams. Int. J. Civ. Eng. Technol 8, 1716–1729 (2017)

    Google Scholar 

  42. Gali, S.; Subramaniam, K.V.L.: Shear behavior of slender and non-slender steel fiber-reinforced concrete beams. ACI Struct. J. (2019). https://doi.org/10.14359/51713307

    Article  Google Scholar 

  43. Roberts, T.M.; Ho, N.L.: Shear failure of deep fibre reinforced concrete beams. Int. J. Cem. Compos. Lightweight Concrete 4(3), 145–152 (1982). https://doi.org/10.1016/0262-5075(82)90040-9

    Article  Google Scholar 

  44. Ahmad, K.; Maabreh, M.; Ghaly, M.; Khan, K.; Qadir, J.; Al-Fuqaha, A.: Developing future human-centered smart cities: critical analysis of smart city security, data management, and ethical challenges. Comput Sci Rev 43, 100452 (2022)

    Article  Google Scholar 

  45. Kamwa, I.; Samantaray, S.R.; Joós, G.: On the accuracy versus transparency trade-off of data-mining models for fast-response PMU-based catastrophe predictors. IEEE Trans Smart Grid 3(1), 152–161 (2011)

    Article  Google Scholar 

  46. Delashmit, W.H., Manry, M.T.: Recent developments in multilayer perceptron neural networks. In: Proceedings of the Seventh Annual Memphis Area Engineering and Science Conference, MAESC (2005)

  47. Waldo, J.: A Comparative Study of Backpropagation and Its Alternatives on Multilayer Perceptrons." arXiv preprint arXiv:2206.06098 (2022)

  48. Maabreh, M., Darwish, O., Karajeh, O., Tashtoush, Y.: On developing deep learning models with particle swarm optimization in the presence of poisoning attacks. In: 2022 International Arab Conference on Information Technology (ACIT), pp. 1–5. IEEE, (2022)

  49. Gareth, J.; Daniela, W.; Trevor, H.; Robert, T.: An Introduction to Statistical Learning: With Applications in R. Springer, Berlin (2013)

    Google Scholar 

  50. Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Vol. 2. Springer, New York (2009)

    Book  Google Scholar 

  51. Hastie, T.; Tibshirani, R.; Wainwright, M.: Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  52. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794. (2016)

  53. Ying, C.; Qi-Guang, M.; Jia-Chen, L.; Lin, G.: Advance and prospects of AdaBoost algorithm. Acta Autom. Sin. 39(6), 745–758 (2013)

    Google Scholar 

  54. James, G.; Witten, D.; Hastie, T.; Tibshirani, R.: An Introduction to Statistical Learning, Vol. 112. Springer, New York (2013)

    Book  Google Scholar 

  55. Botchkarev, A.: A new typology design of performance metrics to measure errors in machine learning regression algorithms. Interdiscip. J. Inf. Knowl. Manag. 14, 045–076 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majdi Maabreh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 14.

Table 14 Database description

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maabreh, M., Almasabha, G. Machine Learning Regression Algorithms for Shear Strength Prediction of SFRC-DBs: Performance Evaluation and Comparisons. Arab J Sci Eng 49, 4711–4727 (2024). https://doi.org/10.1007/s13369-023-08176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08176-y

Keywords

Navigation