Skip to main content

Advertisement

Log in

Synthesis, Molecular Modelling, and Antiproliferative Activity of New Thiadiazole-Pyrazolotriazine and Thiadiazole-Pyrazolopyrimidine Hybrids

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

New thiadiazole-pyrazolotriazine and thiadiazole-pyrazolopyrimidine hybrids were produced by heterocyclization reactions of aminopyrazole-thiadiazole hybrid with various active methylene compounds and/or unsaturated nitriles. The configuration and energy of the DFT predicted frontier molecular orbitals of the produced hybrids were investigated and hybrids with a low energy gap (ΔEH−L) offered better biological activity. The in vitro anticancer activity of the synthesized compounds was examined against four cancer cell lines (MCF-7, PC3, Hep-2, and HepG2) as well as normal fibroblast cells (WI38). The hybrids 6, 7, 8, and 9 revealed strong cytotoxic efficacy toward MCF-7 cell line, IC50 = 6.54–18.36 μM, in comparison to 5-Fu with IC50 = 5.39 ± 0.52 μM. The structural activity relationship (SAR) and Multiple Linear Regression (MLR) studies have been performed to establish the relationship between anticancer efficiency and chemical structure, as well as the quantum calculated parameters. Furthermore, the in silico docking studies were employed to simulate breast hormone signaling with (PDB:5NQR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Prejanò, M.; Alberto, M.E.; De Simone, B.C.; Marino, T.; Toscano, M.; Russo, N.: Sulphur-and selenium-for-oxygen replacement as a strategy to obtain dual type I/type II photosensitizers for photodynamic therapy. Molecules 28(7), 3153 (2023). https://doi.org/10.3390/molecules28073153

    Article  Google Scholar 

  2. Gottardi, W.; Nagl, M.: Chemical properties of N-chlorotaurine sodium, a key compound in the human defence system. Arch. Pharm. Inter. J. Pharm. Med. Chem. 335(9), 411 (2002). https://doi.org/10.1002/1521-4184(200212)335:9%3c411:AID-ARDP411

    Article  Google Scholar 

  3. Bocso, N.S.; Butnariu, M.: The biological role of primary and secondary plants metabolites. J. Nutr. Food Process. 5(3), 1 (2022). https://doi.org/10.31579/2637-8914/094

    Article  Google Scholar 

  4. Moldoveanu, S.C., Pyrolysis of organic molecules. In Applications to Health and Environmental Issues, Elsevier (2019)

  5. Kalinger, R.S.; Pulsifer, I.P.; Hepworth, S.R.; Rowland, O.: Fatty acyl synthetases and thioesterases in plant lipid metabolism: diverse functions and biotechnological applications. Lipids 55(5), 435 (2020). https://doi.org/10.1002/lipd.12226

    Article  Google Scholar 

  6. Kotkar, G.D.; Shetgaonkar, A.D.; Tilve, S.G.: Diversity of chemical skeletons. In: New Horizons in Natural Compound Research, pp. 75–132. Elsevier (2023). https://doi.org/10.1016/B978-0-443-15232-0.00023-0

    Chapter  Google Scholar 

  7. Das, A.; Banik, B.K.: Versatile thiosugars in medicinal chemistry. In: Green Approaches in Medicinal Chemistry for Sustainable Drug Design, pp. 549–574. Elsevier (2020). https://doi.org/10.1016/B978-0-12-817592-7.00015-0

    Chapter  Google Scholar 

  8. Fayed, E.A.; Ragab, A.; Eldin, R.R.E.; Bayoumi, A.H.; Ammar, Y.A.: In vivo screening and toxicity studies of indolinone incorporated thiosemicarbazone, thiazole and piperidinosulfonyl moieties as anticonvulsant agents. Bioorg. Chem. 116, 105300 (2021). https://doi.org/10.1016/j.bioorg.2021.105300

    Article  Google Scholar 

  9. Desai, K. R.; Patel, B.R.: Various synthetic strategies and therapeutic potential of thiadiazole, oxadiazole, isoxazole and isothiazole derivatives. In: Ameta, K.L.; Kant, R.; Penoni, A.; Maspero, A.; Scapinello, L. (Eds.) N-Heterocycles: Synthesis and Biological Evaluation, pp. 221–274. Springer Nature Singapore, Singapore (2022). https://doi.org/10.1007/978-981-19-0832-3_6

    Chapter  Google Scholar 

  10. Osigbemhe, I.G.; Oyoita, E.E.; Louis, H.; Khan, E.M.; Etim, E.E.; Edet, H.O.; Ikenyirimba, O.J.; Oviawe, A.P.; Obuye, F.: Antibacterial potential of N-(2-furylmethylidene)-1,3,4-thiadiazole-2-amine: experimental and theoretical investigations. J. Indian Chem. Soc. 99(9), 100597 (2022). https://doi.org/10.1016/j.jics.2022.100597

    Article  Google Scholar 

  11. Mermer, A.; Bayrak, H.; Şirin, Y.; Emirik, M.; Demirbaş, N.: Synthesis of novel Azol-β-lactam derivatives starting from phenyl piperazine and investigation of their antiurease activity and antioxidant capacity comparing with their molecular docking studies. J. Mol. Struct. 1189, 279–287 (2019). https://doi.org/10.1016/j.molstruc.2019.04.039

    Article  Google Scholar 

  12. Nasiriani, T.; Javanbakht, S.; Nazeri, M.T.; Farhid, H.; Khodkari, V.; Shaabani, A.: Isocyanide-based multicomponent reactions in water: advanced green tools for the synthesis of heterocyclic compounds. Top. Curr. Chem. 380(6), 50 (2022). https://doi.org/10.1007/s41061-022-00403-8

    Article  Google Scholar 

  13. Gupta, O.; Pradhan, T.; Chawla, G.: An updated review on diverse range of biological activities of 1,2,4-triazole derivatives: insight into structure activity relationship. J. Mol. Struct. 1274, 134487 (2023). https://doi.org/10.1016/j.molstruc.2022.134487

    Article  Google Scholar 

  14. Yosief, H.O.; Sarker, M.I.: Naturally derived fatty acid based antibacterial agents. In: Sarker, M.I.; Liu, L.; Yadav, M.P.; Yosief, H.O.; Hussain, S.A. (Eds.) Conversion of Renewable Biomass into Bioproducts, pp. 91–117. American Chemical Society, Washington, DC (2021). https://doi.org/10.1021/bk-2021-1392.ch006

    Chapter  Google Scholar 

  15. Pawar, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K.: Synthetic and medicinal perspective of fused-thiazoles as anticancer agents. Anticancer Agents Med. Chem. 21(11), 1379 (2021). https://doi.org/10.2174/1871520620666200728133017

    Article  Google Scholar 

  16. Dawood, K.M.; Farghaly, T.A.: Thiadiazole inhibitors: a patent review. Exp. Opin. Therap. pat. 27(4), 477–505 (2017). https://doi.org/10.1080/13543776.2017.1272575

    Article  Google Scholar 

  17. Jungwirth, G.; Yu, T.; Cao, J.; Eddine, M.A.; Moustafa, M.; Warta, R.; Debus, J.; Unterberg, A.; Abdollahi, A.; Herold-Mende, C.: KIF11 inhibitors filanesib and ispinesib inhibit meningioma growth in vitro and in vivo. Cancer Lett. 506, 1–10 (2021). https://doi.org/10.1016/j.canlet.2021.02.016

    Article  Google Scholar 

  18. Berger, D.M.; Torres, N.; Dutia, M.; Powell, D.; Ciszewski, G.; Gopalsamy, A.; Levin, J.I.; Kim, K.-H.; Xu, W.; Wilhelm, J.: Non-hinge-binding pyrazolo[1,5-a]pyrimidines as potent B-Raf kinase inhibitors. Bioorg. Med. Chem. Lett. 19(23), 6519–6523 (2009). https://doi.org/10.1016/j.bmcl.2009.10.049

    Article  Google Scholar 

  19. Williamson, D.S.; Parratt, M.J.; Bower, J.F.; Moore, J.D.; Richardson, C.M.; Dokurno, P.; Cansfield, A.D.; Francis, G.L.; Hebdon, R.J.; Howes, R.: Structure-guided design of pyrazolo[1,5-a]pyrimidines as inhibitors of human cyclin-dependent kinase 2. Bioorg. Med. Chem. Lett. 15(4), 863 (2005). https://doi.org/10.1016/j.bmcl.2004.12.073

    Article  Google Scholar 

  20. Ren, L.; Laird, E.R.; Buckmelter, A.J.; Dinkel, V.; Gloor, S.L.; Grina, J.; Newhouse, B.; Rasor, K.; Hastings, G.; Gradl, S.N.: Potent and selective pyrazolo[1,5-a]pyrimidine based inhibitors of B-RafV600E kinase with favorable physicochemical and pharmacokinetic properties. Bioorg. Med. Chem. Lett. 22(2), 1165 (2012). https://doi.org/10.1016/j.bmcl.2011.11.092

    Article  Google Scholar 

  21. El-Kalyoubi, S.A.; Ragab, A.; Abu Ali, O.A.; Ammar, Y.A.; Seadawy, M.G.; Ahmed, A.; Fayed, E.A.: One-pot synthesis and molecular modeling studies of new bioactive spiro-oxindoles based on uracil derivatives as sars-cov-2 inhibitors targeting rna polymerase and spike glycoprotein. Pharm 15(3), 376 (2022). https://doi.org/10.3390/ph15030376

    Article  Google Scholar 

  22. Zaharan, M.A.; El-Sharief, A.M.S.; El-Gaby, M.S.; Ammar, Y.A.; El-Said, U.H.: Some reactions with Ketene dithioacetals: part I: synthesis of antimicrobial pyrazolo[1,5-a]pyrimidines via the reaction of ketene dithioacetals and 5-aminopyrazoles. Il Farmaco 56(4), 277 (2001). https://doi.org/10.1016/S0014-827X(01)01042-4

    Article  Google Scholar 

  23. Engers, D.W.; Frist, A.Y.; Lindsley, C.W.; Hong, C.C.; Hopkins, C.R.: Synthesis and structure–activity relationships of a novel and selective bone morphogenetic protein receptor (BMP) inhibitor derived from the pyrazolo[1,5-a]pyrimidine scaffold of Dorsomorphin: the discovery of ML347 as an ALK2 versus ALK3 selective MLPCN probe. Bioorg. Med. Chem. Lett. 23(11), 3248 (2013)

    Article  Google Scholar 

  24. Ghozlan, S.A.; Abdelrazek, F.M.; Mohamed, M.H.; Azmy, K.E.: Synthesis of some new pyrazole and pyrazolopyrimidine derivatives. ChemInform 42(14), 14 (2011). https://doi.org/10.1002/chin.201114182

    Article  Google Scholar 

  25. Frizzo, C.P.; Martins, M.A.; Marzari, M.R.; Campos, P.T.; Claramunt, R.M.; García, M.Á.; Sanz, D.; Alkorta, I.; Elguero, J.: Structural studies of 2-methyl-7-substituted pyrazolo[1,5-a]pyrimidines. J. Heterocycl. Chem. 47(6), 1259 (2010). https://doi.org/10.1002/jhet.377

    Article  Google Scholar 

  26. Vickers, N.J.: Animal communication: When i’m calling you, will you answer too? Curr. Biol. 27(14), R713–R715 (2017). https://doi.org/10.1016/j.cub.2017.05.064

    Article  Google Scholar 

  27. Manetti, F.; Santucci, A.; Locatelli, G.A.; Maga, G.; Spreafico, A.; Serchi, T.; Orlandini, M.; Bernardini, G.; Caradonna, N.P.; Spallarossa, A.: Identification of a novel pyrazolo[3,4-d]pyrimidine able to inhibit cell proliferation of a human osteogenic sarcoma in vitro and in a xenograft model in mice. J. Med. Chem. 50(23), 5579–5588 (2007). https://doi.org/10.1021/jm061449r

    Article  Google Scholar 

  28. Heathcote, D.A.; Patel, H.; Kroll, S.H.; Hazel, P.; Periyasamy, M.; Alikian, M.; Kanneganti, S.K.; Jogalekar, A.S.; Scheiper, B.; Barbazanges, M.: A novel pyrazolo[1,5-a]pyrimidine is a potent inhibitor of cyclin-dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor xenografts following oral administration. J. Med. Chem. 53(24), 8508–8522 (2010). https://doi.org/10.1021/jm100732t

    Article  Google Scholar 

  29. Ismail, M.; Soliman, D.H.; Farrag, A.M.; Sabour, R.: Synthesis, antitumor activity, pharmacophore modeling and Qsar studies of novel pyrazoles and pyrazolo[1,5-a]pyrimidines against breast adenocarcinoma MCF-7 cell line. Int. J. Pharm. Pharm. Sci. 8(7), 434 (2016)

    Google Scholar 

  30. Rusinov, V.; Ulomskii, E.; Chupakhin, O.; Charushin, V.: Azolo[5,1-c]-1,2,4-triazines as a new class of antiviral compounds. Russ. Chem. Bull. 57, 985 (2008). https://doi.org/10.1007/s11172-008-0130-8

    Article  Google Scholar 

  31. Coronnello, M.; Ciciani, G.; Mini, E.; Guerrini, G.; Caciagli, B.; Selleri, S.; Costanzo, A.; Mazzei, T.: Cytotoxic activity of 3-nitropyrazolo[5,1-c][1,2,4]benzotriazine derivatives: a new series of anti-proliferative agents. Anticancer Drugs 16(6), 645–651 (2005)

    Article  Google Scholar 

  32. Ciciani, G.; Coronnello, M.; Guerrini, G.; Selleri, S.; Cantore, M.; Failli, P.; Mini, E.; Costanzo, A.: Synthesis of new pyrazolo[5,1-c][1,2,4]benzotriazines, pyrazolo[5,1-c]pyrido [4,3-e][1,2,4]triazines and their open analogues as cytotoxic agents in normoxic and hypoxic conditions. Bioorg. Med. Chem. 16(21), 9409–9419 (2008). https://doi.org/10.1016/j.bmc.2008.09.055

    Article  Google Scholar 

  33. Alqahtani, A.M.; Bayazeed, A.A.: Synthesis and antiproliferative activity studies of new functionalized pyridine linked thiazole derivatives. Arab. J. Chem. 14(1), 102914 (2021). https://doi.org/10.1016/j.arabjc.2020.11.020

    Article  Google Scholar 

  34. Gerlier, D.; Thomasset, N.: Use of MTT colorimetric assay to measure cell activation. J. Iimmunol. Meth. 94(1–2), 57–63 (1986). https://doi.org/10.1016/0022-1759(86)90215-2

    Article  Google Scholar 

  35. Mor, S.; Khatri, M.; Sindhu, S.: Recent progress in anticancer agents incorporating Pyrazole scaffold. Mini Rev. Med. Chem. 22(1), 115–163 (2022). https://doi.org/10.2174/1389557521666210325115218

    Article  Google Scholar 

  36. Alam, M.J.; Alam, O.; Naim, M.J.; Nawaz, F.; Manaithiya, A.; Imran, M.; Thabet, H.K.; Alshehri, S.; Ghoneim, M.M.; Alam, P.: Recent advancement in drug design and discovery of pyrazole biomolecules as cancer and inflammation therapeutics. Molecules 27(24), 8708 (2022). https://doi.org/10.3390/molecules27248708

    Article  Google Scholar 

  37. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.: In Gaussian 09W, Revision A. 1; Gaussian. Inc., Wallingford (2009)

  38. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648 (1993)

    Article  Google Scholar 

  39. Lee, C.; Yang, W.; Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Review B 37(2), 785–789 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  Google Scholar 

  40. Perdew, J.P.; Wang, Y.: Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B 46(20), 12947–12954 (1992)

    Article  Google Scholar 

  41. Dennington, R.; Keith, T.; Millam, J.: GaussView, version 5 (2009)

  42. Biovia, D.S.: In Materials Studio (2017)

  43. Delley, B.: Ground-state enthalpies: evaluation of electronic structure approaches with emphasis on the density functional method. J. Chem. Phys. A 110(50), 13632–13639 (2006). https://doi.org/10.1021/jp0653611

    Article  Google Scholar 

  44. Busch, B.B.; Stevens, W.C.; Martin, R.; Ordentlich, P.; Zhou, S.; Sapp, D.W.; Horlick, R.A.; Mohan, R.: Identification of a selective inverse agonist for the orphan nuclear receptor estrogen-related receptor α. J. Med. Chem. 47(23), 5593–5596 (2004). https://doi.org/10.1021/jm049334f

    Article  Google Scholar 

  45. Feng, Y.; He, J.; Li, W.; Yang, Z.; Wei, Y.; Liu, P.; Zhao, J.; Gu, C.; Wang, W.: Selective transformations of 2-(p-toluenesulfonyl)-N-tosylhydrazones to substituted 1,2,3-thiadiazoles. Tetrahedron 78, 131803 (2021). https://doi.org/10.1016/j.tet.2020.131803

    Article  Google Scholar 

  46. Ivanov, S.M.; Koltun, D.S.: Synthesis and crystal structures of 7, 8-bromo (dibromo)-3-tert-butylpyrazolo[5,1-c][1,2,4]triazines. Struct. Chem. 32, 1553–1562 (2021). https://doi.org/10.1007/s11224-021-01768-0

    Article  Google Scholar 

  47. Sajan, D.; Lynnette Joseph, N.; Vijayan, M.K.: Natural bond orbital analysis, electronic structure, non-linear properties and vibrational spectral analysis of L-histidinium bromide monohydrate: a density functional theory. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 81(1), 85–98 (2011). https://doi.org/10.1016/j.saa.2011.05.052

    Article  Google Scholar 

  48. Bulat, F.A.; Chamorro, E.; Fuentealba, P.; Toro-Labbe, A.: Condensation of frontier molecular orbital Fukui functions. J. Phys. Chem. A 108(2), 342–349 (2004). https://doi.org/10.1021/jp036416r

    Article  Google Scholar 

  49. Xavier, S.; Periandy, S.; Ramalingam, S.: NBO, conformational NLO HOMO–LUMO NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods. Spectrochim Acta Part A MOl. Biomol. Spectrosc. 137, 306 (2015)

    Article  Google Scholar 

  50. Makhlouf, M.M.; Radwan, A.S.; Ghazal, B.: Experimental and DFT insights into molecular structure and optical properties of new chalcones as promising photosensitizers towards solar cell applications. Appl. Surf. Sci. 452, 337–351 (2018). https://doi.org/10.1016/j.apsusc.2018.05.007

    Article  Google Scholar 

  51. Bouchoucha, A.; Zaater, S.; Bouacida, S.; Merazig, H.; Djabbar, S.: Synthesis and characterization of new complexes of nickel (II), palladium (II) and platinum(II) with derived sulfonamide ligand: structure, DFT study, antibacterial and cytotoxicity activities. J. Mol. Struct. 1161, 345–355 (2018). https://doi.org/10.1016/j.molstruc.2018.02.057

    Article  Google Scholar 

  52. Afolabi, S.O.; Semire, B.; Akiode, O.K.; Idowu, M.A.: Quantum study on the optoelectronic properties and chemical reactivity of phenoxazine-based organic photosensitizer for solar cell purposes. Theor. Chem. Acc. 141(4), 1–14 (2022). https://doi.org/10.1007/s00214-022-02882-w

    Article  Google Scholar 

  53. Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P.: Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21(6), 748 (2016). https://doi.org/10.3390/molecules21060748

    Article  Google Scholar 

  54. Bhagyasree, J.B.; Varghese, H.T.; Panicker, C.Y.; Samuel, J.; Van Alsenoy, C.; Bolelli, K.; Yildiz, I.; Aki, E.: Vibrational spectroscopic (FT-IR, FT-Raman, (1)H NMR and UV) investigations and computational study of 5-nitro-2-(4-nitrobenzyl) benzoxazole. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 102, 99–113 (2013)

    Article  Google Scholar 

  55. Olasunkanmi, L.O.; Obot, I.B.; Ebenso, E.E.: Adsorption and corrosion inhibition propertiesofN-{n-[1-R-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-3-yl]phenyl} methanesulfon-amides on mild steel in 1 M HCl: experimental and theoretical studies. RSC Adv. 6(90), 86782–86797 (2016). https://doi.org/10.1039/c6ra11373g

    Article  Google Scholar 

  56. El Adnani, Z.; Mcharfi, M.; Sfaira, M.; Benzakour, M.; Benjelloun, A.; Touhami, M.E.: DFT theoretical study of 7-R-3methylquinoxalin-2 (1H)-thiones (RH; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corros. Sci. 68, 223–230 (2013). https://doi.org/10.1016/j.corsci.2012.11.020

    Article  Google Scholar 

  57. Mi, H.; Xiao, G.; Chen, X.: Theoretical evaluation of corrosion inhibition performance of three antipyrine compounds. Comput. Theor. Chem. 1072, 7–14 (2015). https://doi.org/10.1016/j.comptc.2015.08.023

    Article  Google Scholar 

  58. Messali, M.; Larouj, M.; Lgaz, H.; Rezki, N.; Al-Blewi, F.; Aouad, M.; Chaouiki, A.; Salghi, R.; Chung, I.-M.: A new schiff base derivative as an effective corrosion inhibitor for mild steel in acidic media: experimental and computer simulations studies. J. Mol. Struct. 1168, 39–48 (2018)

    Article  Google Scholar 

  59. Roy, R.; Krishnamurti, S.; Geerlings, P.; Pal, S.: Local softness and hardness based reactivity descriptors for predicting intra-and intermolecular reactivity sequences: carbonyl compounds. J. Phys. Chem. A 102(21), 3746–3755 (1998). https://doi.org/10.1021/jp973450v

    Article  Google Scholar 

  60. Roy, R.; de Proft, F.D.; Geerlings, P.: Site of protonation in aniline and substituted anilines in the gas phase: a study via the local hard and soft acids and bases concept. J. Phys. Chem. A 102(35), 7035–7040 (1998). https://doi.org/10.1021/jp9815661

    Article  Google Scholar 

  61. Roy, R.K.; Pal, S.; Hirao, K.: On non-negativity of Fukui function indices. J. Chem. Phys. 110(17), 8236–8245 (1999). https://doi.org/10.1063/1.478792

    Article  Google Scholar 

  62. Sun, Y.; Chen, X.; Sun, L.; Guo, X.; Lu, W.: Nanoring structure and optical properties of Ga8As8. Chem. Phys. Lett. 381(3–4), 397–403 (2003)

    Article  Google Scholar 

  63. Abraham, J.P.; Sajan, D.; Hubert Joe, I.; Jayakumar, V.S.: Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of p-amino acetanilide. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71(2), 355–367 (2008). https://doi.org/10.1016/j.saa.2008.01.010

    Article  Google Scholar 

  64. Karamanis, P.; Pouchan, C.; Maroulis, G.: Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations. Phys. Rev. A 77(1), 013201 (2008). https://doi.org/10.1103/PhysRevA.77.013201

    Article  Google Scholar 

  65. Aziz, M.; Ejaz, S.A.; Tamam, N.; Siddique, F.; Riaz, N.; Qais, F.A.; Chtita, S.; Iqbal, J.: Identification of potent inhibitors of NEK7 protein using a comprehensive computational approach. Sci. Rep. 12(1), 1 (2022). https://doi.org/10.1038/s41598-022-10253-5

    Article  Google Scholar 

  66. Shi, Y.: Particle swarm optimization: developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), p. 81. IEEE (2001). https://doi.org/10.1109/CEC.2001.934374.

  67. Prasad, P.N.; Williams, D.J.: Introduction to Nonlinear Optical Effects in Molecules and Polymers. Wiley, New York (1991)

    Google Scholar 

  68. Williams, D.J.: Organic polymeric and non-polymeric materials with large optical nonlinearities. Angew. Chem. Int. Ed. 23(9), 690–703 (1984)

    Article  Google Scholar 

  69. Khan, M.U.; Khalid, M.; Shafiq, I.; Khera, R.A.; Shafiq, Z.; Jawaria, R.; Shafiq, M.; Alam, M.M.; Braga, A.A.C.; Imran, M.: Theoretical investigation of nonlinear optical behavior for rod and T-Shaped phenothiazine based D-π-A organic compounds and their derivatives. J. Saudi Chem. Soc. 25(10), 101339 (2021)

    Article  Google Scholar 

  70. Ahmed, A.B.; Feki, H.; Abid, Y.; Boughzala, H.; Mlayah, A.: Structural, vibrational and theoretical studies of l-histidine bromide. J. Mole. Struct. 888(1–3), 180–186 (2008). https://doi.org/10.1016/j.molstruc.2007.11.056

    Article  Google Scholar 

  71. Abd El-Meguid, E.; Awad, H.; Anwar, M.: Synthesis of New 1, 3, 4-oxadiazole-benzimidazole derivatives as potential antioxidants and breast cancer inhibitors with apoptosis inducing activity. Russ. J. Gen. Chem. 89(2), 348–356 (2019). https://doi.org/10.1134/S1070363219020282

    Article  Google Scholar 

  72. Ragab, F.A.; Nissan, Y.M.; Seif, E.M.; Maher, A.; Arafa, R.K.: Synthesis and in vitro investigation of novel cytotoxic pyrimidine and pyrazolopyrimidne derivatives showing apoptotic effect. Bioorg. Chem. 96, 103621 (2020). https://doi.org/10.1016/j.bioorg.2020.103621

    Article  Google Scholar 

  73. Hossan, A.; Alrefaei, A.F.; Katouah, H.A.; Bayazeed, A.; Asghar, B.H.; Shaaban, F.; El-Metwaly, N.M.: Synthesis, anticancer activity, and molecular docking of new pyrazolo[1,5-a]pyrimidine derivatives. J. Saudi Chem. Soc. 27(2), 101599 (2023)

    Article  Google Scholar 

  74. Asati, V.; Anant, A.; Patel, P.; Kaur, K.; Gupta, G.: Pyrazolopyrimidines as anticancer agents: a review on structural and target-based approaches. Eur. J. Med. Chem. 225, 113781 (2021). https://doi.org/10.1016/j.jscs.2023.101599

    Article  Google Scholar 

  75. Cascioferro, S.; Parrino, B.; Spano, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G.: An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. J. Med. Chem. 142, 328–375 (2017). https://doi.org/10.1016/j.ejmech.2017.08.009

    Article  Google Scholar 

  76. Alqahtani, A.M.: Synthesis and biological screening of new thiadiazolopyrimidine-based polycyclic compounds. Sci. Rep. 11(1), 1–15 (2021). https://doi.org/10.1038/s41598-021-95241-x

    Article  MathSciNet  Google Scholar 

  77. Worachartcheewan, A.; Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, S.; Prachayasittikul, V.: Predicting the free radical scavenging activity of curcumin derivatives. Chemometr. Intell. Lab. Syst. 109(2), 207–216 (2011). https://doi.org/10.1016/j.chemolab.2011.09.010

    Article  Google Scholar 

  78. OriginLab: OriginPro 2018. OriginLab Corporation Northampton, MA (2018)

    Google Scholar 

  79. Bhosale, M.; Yadav, A.; Magdum, C.; Mohite, S.: Microwave Assisted Synthesis, Molecular docking studies and anticancer screening of some 1,3,4-thiadiazole derivatives. J. Univ. Shanghai Sci. Technol. 22(11), 520 (2020)

    Google Scholar 

  80. Niranjan, V.; Jayaprasad, S.; Uttarkar, A.; Kusanur, R.; Kumar, J.: Design of novel coumarin derivatives as NUDT5 antagonists that act by restricting ATP synthesis in breast cancer cells. Molecules 28(1), 89 (2023). https://doi.org/10.3390/molecules28010089

    Article  Google Scholar 

  81. Wright, R.H.; Vastolo, V.; Oliete, J.Q.; Carbonell-Caballero, J.; Beato, M.: Global signalling network analysis of luminal T47D breast cancer cells in response to progesterone. Front. Endocrinol. 13, 888802 (2022). https://doi.org/10.3389/fendo.2022.888802

    Article  Google Scholar 

  82. Wright, R.H.; Beato, M.: Role of the NUDT enzymes in breast cancer. Int. J. Mol. Sci. 22(5), 2267 (2021). https://doi.org/10.3390/ijms22052267

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups. Projects under Grant Number (RGP.1/53/43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sraa Abu-Melha.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9783 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Melha, S. Synthesis, Molecular Modelling, and Antiproliferative Activity of New Thiadiazole-Pyrazolotriazine and Thiadiazole-Pyrazolopyrimidine Hybrids. Arab J Sci Eng 49, 381–401 (2024). https://doi.org/10.1007/s13369-023-08137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08137-5

Keywords

Navigation