Skip to main content

Advertisement

Log in

Optimization of Flux Barrier in Asymmetric V-Shaped IPM Motor and Analysis of Its Impact on Performance

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study introduces an asymmetric V-shaped interior permanent magnet synchronous motor (AVIPMSM) by modifying the conventional flux barrier of a V-shaped interior permanent magnet synchronous motor (VIPMSM) including optimization-based finite element analysis (FEA). Nowadays usage of VIPMSM is increasing where higher torque density with high efficiency by decreasing the torque ripple factor is required. To improve these properties, flux barriers are modified in VIPMSM by applying optimization methods. For each pole of VIPMSM, modification has been depleted based on symmetric and asymmetric barriers. It introduces the magnetic field shifting effect in the motor. After deciding the flux barrier in the rotor, an optimized method is applied for achieving the proper dimensions of each barrier to estimate the maximum torque and other performances of the motor. Here, a 24/4 pole VIPMSM is considered for design and analysis. ANSYS Maxwell platform is chosen for performance analysis of motor. In addition to using the inbuilt minimum function optimization techniques of ANSYS, genetic algorithm (GA)/particle swarm optimization (PSO) in MATLAB is applied in the proposal to optimize the flux barriers of the motor. To validate the effectiveness of the proposed method, FEA is adopted by taking into account optimized parameters. The paper also investigates the effect of flux barriers on loss factors to improve the motor efficiency. A comparative study with the benchmark VIPMSM is presented to validate the designed AVIPMSM using optimization and its results are reported. Eventually, the FEA result proves that PSO optimized model is more appropriate for the case understudies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abd Elhafez, A.A.; Aldalbehia, M.A.; Aldalbehia, N.F.; Alotaibi, F.R.; Alotaibia, N.A.; Alotaibi, R.S.: Comparative study for machine candidates for high-speed traction applications. Int. J. Electr. Eng. 10(1), 71–84 (2017)

    Google Scholar 

  2. Yang, Z.; Shang, F.; Brown, I.P.; Krishnamurthy, M.: Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications. IEEE Trans. Transp. Electr. 1(3), 245–254 (2015)

    Article  Google Scholar 

  3. Kim, H.K.; Hur, J.: Dynamic characteristic analysis of irreversible demagnetization in SPM-and IPM-type BLDC motors. IEEE Trans. Ind. Appl. 53(2), 982–990 (2016)

    Article  Google Scholar 

  4. Rahman, M.A.; Masrur M.A.; Uddin M.N.: Impacts of interior permanent magnet machine technology for electric vehicles. In: IEEE International Electric Vehicle Conference, pp 1–5 (2012)

  5. Sayed, E.; Abdalmagid, M.; Pietrini, G.; Saadeh, N.M.; Callegaro, A.D.; Goldstein, C.; Emadi, A.: Review of electric machines in more/hybrid/turbo electric aircraft. IEEE Trans. Transp. Electr. 7782(6), 1–30 (2021)

    Google Scholar 

  6. Mishra, A.; Agarwal, P.; Srivastava, S.P.: A comprehensive analysis and implementation of vector control of permanent magnet synchronous motor. Int. J. Power Energy Convers. 5(1), 1–23 (2014)

    Article  Google Scholar 

  7. Hwang, C.C.; Chang, C.M.; Cheng, S.P.; Chan, C.K.; Pan, C.T.; Chang, T.Y.: Comparison of performances between IPM and SPM motors with rotor eccentricity. J. Magn. Magn. Mater. 282, 360–363 (2004)

    Article  Google Scholar 

  8. Liu, G.; Xu, G.; Zhao, W.; Du, X.; Chen, Q.: Improvement of torque capability of permanent-magnet motor by using hybrid rotor configuration. IEEE Trans. Energy Convers. 32(3), 953–962 (2017)

    Article  Google Scholar 

  9. Yang, S.; Zhu, X.; Xiang, Z.; Fan, D.; Wu, W.; Yin, J.: Design and analysis of a new flux-intensifying permanent magnet brushless motor with multilayer flux barriers. AIP Adv. 7(5), 056628 (2017)

    Article  Google Scholar 

  10. Bianchi, N.; Bolognani, S.: Influence of rotor geometry of an IPM motor on sensorless control feasibility. IEEE Trans. Ind. Appl. 43(1), 87–96 (2017)

    Article  Google Scholar 

  11. Akiki, P.; Hassan, M.H.; Bensetti, M.; Dessante, P.; Vannier, J.C.; Prieto, D.; McClelland, M.: Multiphysics design of a V-shaped IPM motor. IEEE Trans. Energy Convers. 33(3), 1141–1153 (2018)

    Article  Google Scholar 

  12. Zhang, X.; Zhao, X.; Niu, S.: A novel dual-structure parallel hybrid excitation machine for electric vehicle propulsion. Energies 12(3), 338 (2019)

    Article  Google Scholar 

  13. Xiao, Y.; Zhu, Z.Q.; Chen, J.T.; Wu, D.; Gong, L.M.: A novel V-shaped interior permanent magnet synchronous machine with asymmetric spoke-type flux barrier. Int. Conf. Electr. Mach. 1, 382–388 (2020)

    Google Scholar 

  14. Hua, H.; Zhu, Z.Q.; Pride, A.; Deodhar, R.; Sasaki, T.: Comparative study on variable flux memory machines with parallel or series hybrid magnets. IEEE Trans. Ind. Appl. 55(2), 1408–1419 (2018)

    Article  Google Scholar 

  15. Kashif, M.; Singh, B.: Design optimization with improved torque performance of a new flux-intensifying PMSM using multilayer barriers for solar water pumps. Eng. Sci. Technol. 36, 101134 (2022)

    Google Scholar 

  16. Sayed, E.; Yang, Y.; Bilgin, B.; Bakr, M.H.; Emadi, A.: A comprehensive review of flux barriers in interior permanent magnet synchronous machines. IEEE Access 7, 149168–149181 (2019)

    Article  Google Scholar 

  17. Bi, Y.; Huang, J.; Wu, H.; Fu, W.; Niu, S.; Zhao, X.: A general pattern of assisted flux barriers for design optimization of an asymmetric V-shaped interior permanent magnet machine. IEEE Trans. Magn. 58(9), 8107304 (2022)

    Article  Google Scholar 

  18. Yang, H.; Qian, C.; Wang, W.; Lin, H.; Zhu, Z.Q.; Niu, S.; Liu, W.; Lyu, S.: A novel asymmetric-magnetic-pole interior PM machine with magnet-axis-shifting effect. IEEE Trans. Ind. Appl. 57(6), 5927–5938 (2021)

    Article  Google Scholar 

  19. Xiao, Y.; Zhu, Z.Q.; Wang, S.S.; Jewell, G.W.; Chen, J.T.; Wu, D.; Gong, L.M.: A novel asymmetric interior permanent magnet machine for electric vehicles. IEEE Trans. Energy Convers. 36(3), 2404–2415 (2021)

    Article  Google Scholar 

  20. Bianchi, N.; Bolognani, S.; Bon, D.; Dai, P.M.: Rotor flux-barrier design for torque ripple reduction in synchronous reluctance motors. Conf Rec. IEEE Ind. Appl. Conf. Forty-First IAS Annu. Meet. 3, 1193–1200 (2006)

    Google Scholar 

  21. Kwon, J.W.; Li, M.; Kwon, B.I.: Design of V-type consequent-pole IPM machine for PM cost reduction with analytical method. IEEE Access 9, 77386–77397 (2021)

    Article  Google Scholar 

  22. Chen, H.; Yan, W.; Gu, J.J.; Sun, M.: Multiobjective optimization design of a switched reluctance motor for low-speed electric vehicles with a Taguchi–CSO algorithm. IEEE/ASME Trans. Mechatron. 23(4), 1762–1774 (2018)

    Article  Google Scholar 

  23. Zhou, X.; Zhu, X.; Wu, W.; Xiang, Z.; Liu, Y.; Quan, L.: Multi-objective optimization design of variable-saliency-ratio PM motor considering driving cycles. IEEE Trans. Ind. Electron 68(8), 6516–6526 (2020)

    Article  Google Scholar 

  24. Hua, Y.; Zhu, H.; Gao, M.; Ji, Z.: Multiobjective optimization design of permanent magnet assisted bearingless synchronous reluctance motor using NSGA-II. IEEE Trans. Ind. Electron 68(11), 10477–10487 (2020)

    Article  Google Scholar 

  25. Ren, W.; Xu, Q.; Li, Q.: Asymmetrical V-shaped rotor configuration of an interior permanent magnet machine for improving torque characteristics. IEEE Trans. Magn. 51(11), 1–4 (2015)

    Google Scholar 

  26. Xiao, Y.; Zhu, Z.Q.; Jewell, G.W.; Chen, J.; Wu, D.; Gong, L.: A novel asymmetric rotor interior permanent magnet machine with hybrid-layer permanent magnets. IEEE Trans. Ind. Appl. 57(6), 5993–6006 (2021)

    Article  Google Scholar 

  27. Xiao, Y.; Zhu, Z.Q.; Jewell, G.W.; Chen, J.T.; Wu, D.; Gong, L.M.: A novel asymmetric interior permanent magnet synchronous machine. IEEE Trans. Ind. Appl. 58(3), 3370–3382 (2022)

    Article  Google Scholar 

  28. Liu, L.; Liu, W.; Cartes, D.A.: Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Eng. Appl. Artif. Intell. 21(7), 1092–1100 (2008)

    Article  Google Scholar 

  29. Ramarao, G.; Chandrasekaran, K.: Evaluating lightning channel-base-current function parameters for identifying interdependence of wavefront and tail by PSO method. IEEE Trans. Electromagn. Compat. 61(1), 183–190 (2018)

    Article  Google Scholar 

  30. Safari, A.; Ahmadian, A.; Aliakbar, M.G.: Comparison of honey bee mating optimization and genetic algorithm for coordinated design of Pss and Statcom based on damping of power system oscillation. J. Electr. Eng. 64(3), 133–142 (2013)

    Google Scholar 

  31. Pechlivanidou, M.C.; Chasiotis, I.D.; Karnavas, Y.L.: A comparative study on 2D and 3D magnetic field analysis of permanent magnet synchronous motor using FEM simulations. J. Electromagn. Waves Appl. 33(17), 2215–2241 (2019)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kandasamy Chandrasekaran.

Ethics declarations

Conflict of Interest

All the authors declare that there is no conflict of interest.

Replication of Results

The data that support the findings of this study are available on request from the corresponding author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, S., Bag, B. & Chandrasekaran, K. Optimization of Flux Barrier in Asymmetric V-Shaped IPM Motor and Analysis of Its Impact on Performance. Arab J Sci Eng 49, 6225–6239 (2024). https://doi.org/10.1007/s13369-023-08125-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08125-9

Keywords

Navigation