Skip to main content
Log in

Torque pulsation reduction in five-phase PMASyncRMs

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This paper investigates two rotor configurations for five-phase permanent magnet assisted synchronous reluctance motor (PMASyncRM) in which the Ns/Np ratio remains equal to the number of phases and the minimization of torque pulsation, mainly cogging torque (Tcog), is desired. The proposed initial models have three layers of flux barriers per pole and are categorized as either A-type or B-type. The A-type has three layers of flux barriers where two of them are filled with PMs and the third one is left empty. The B-type has PMs inserted into all three layers of the flux barriers. Accordingly, based on torque analyses of the proposed models, the candidate that produces the lowest Tcog is selected for in-depth study. Thus, a sensitivity analyze is performed considering the length of the stator slot opening (Lso), the length of the air-gap (Lg), and the length of the 3rd flux barrier (Lb) as analysis parameters that are simultaneously taken into account. The outputs demonstrate that for the resultant values of Lso-Opt, Lg-Opt, and Lb-Opt, the value of Tcog declined considerably when compared with that of the initial motors. Finally, the optimized model is studied using 2-D finite element analysis (FEA) and the torque characteristics were compared with the initial model. The obtained results show that the optimized model provides much lower torque vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Murugesan, S.: An overview of electric motors for space applications. IEEE Trans Ind. Electron. Control Instrum. IECI (1981). https://doi.org/10.1109/TIECI.1981.351050

    Article  Google Scholar 

  2. Harbour, J.P.: Evaluation and comparison of electric propulsion motors for submarines. M.Sc. Thesis, Massachusetts Institute of Technology (MIT) (2001)

  3. Petkovska, L., Lefley, P., Cvetkovski, G.: Synthesis and analysis of a high-performance low-cost permanent magnet brushless DC motor. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 31(5), 1482–1491 (2012). https://doi.org/10.1108/03321641211248237

    Article  Google Scholar 

  4. Atănăsoae, P., Pentiuc, R., Hopulele, E.: The optimal distribution of reactive power on synchronous generators in power plants. In: 8th Int. Conf. Interdisciplinary in Engineering (INTER-ENG2014), Tirgu Mures, Romania (2014). https://doi.org/10.1016/j.protcy.2015.02.090

  5. Chebaani, M., Goléa, A., Benchouia, M.T., Goléa, N.: Sensorless finite-state predictive torque control of induction motor fed by four-switch inverter using extended Kalman filter. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 37(6), 2006–2024 (2018). https://doi.org/10.1108/COMPEL-08-2017-0349

    Article  Google Scholar 

  6. Qi, X., Wu, L., Zhou, X., Ma, X.: Field oriented predictive control strategy for induction machine drives. Assem. Autom. 37(1), 103–113 (2017). https://doi.org/10.1108/AA-10-2016-132

    Article  Google Scholar 

  7. Kostko, J.K.: Polyphase reaction synchronous motors. J. Am. Inst. Electr. Eng. 42(11), 1162–1168 (1923). https://doi.org/10.1109/JoAIEE.1923.6591529

    Article  Google Scholar 

  8. Cai, S., Jin, M.-J., Hao, H., Shen, J.-X.: Comparative study on synchronous reluctance and PM machines. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 35(2), 607–623 (2016). https://doi.org/10.1108/COMPEL-12-2015-0447

    Article  Google Scholar 

  9. Guan, Y., Zhu, Z.Q., Afinowi, I.A.A., Mipo, J.C., Farah, P.: Design of synchronous reluctance and permanent magnet synchronous reluctance machines for electric vehicle application. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 35(2), 586–606 (2016). https://doi.org/10.1108/COMPEL-02-2015-0109

    Article  Google Scholar 

  10. Nagarajan, V.S., Mahadevan, B., Kamaraj, V., Arumugam, R., Nagarajan, G., Srivignesh, S., Suudharshana, M.: Design optimization of ferrite assisted synchronous reluctance motor using multi-objective differential evolution algorithm. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 36(1), 219–239 (2017). https://doi.org/10.1108/COMPEL-06-2016-0253

    Article  Google Scholar 

  11. Dia, K., Sun, X., Lei, G., Bramerdorfer, G., Guo, Y., Zhu, J.: System-level robust design optimization of a switched reluctance motor drive system considering multiple driving cycles. IEEE Trans. Energy Convers. 36(1), 348–357 (2021). https://doi.org/10.1109/TEC.2020.3009408

    Article  Google Scholar 

  12. Dia, K., Sun, X., Lei, G., Guo, Y., Zhu, J.: Multiobjective system level optimization method for switched reluctance motor drive systems using finite element model. IEEE Trans. Ind. Electron. 67(12), 10055–10064 (2020). https://doi.org/10.1109/TIE.2019.2962483

    Article  Google Scholar 

  13. Chai, W., Zhao, W., Kwon, B.-I.: Optimal design of wound field synchronous reluctance machines to improve torque by increasing the saliency ratio. IEEE Trans. Magn. (2017). https://doi.org/10.1109/TMAG.2017.2707459

    Article  Google Scholar 

  14. Sun, X., Shi, Zh., Lei, G., Guo, Y., Zhu, J.: Multi-objective design optimization of an IPMSM based on multilevel strategy. IEEE Trans. Ind. Electron. 68(1), 139–148 (2021). https://doi.org/10.1109/TIE.2020.2965463

    Article  Google Scholar 

  15. Lei, G., Bramerdorfer, G., Ma, B., Guo, Y., Zhu, J.: Robust design optimization of electrical machines: multi-objective approach. IEEE Trans. Energy Convers. 36(1), 390–401 (2021). https://doi.org/10.1109/TEC.2020.3003050

    Article  Google Scholar 

  16. Ghorbani, H.R., Majidi, B.: Power density optimization through optimal selection of PM properties in a PM-SyncRM using FEM analysis. In: 10th International power electronics, drive systems and technologies conference (PEDSTC2019), Shiraz, Fars, Iran (2019). https://doi.org/10.1109/PEDSTC.2019.8697258

  17. Guo, F., Brown, I.P.: Simultaneous magnetic and structural topology optimization of synchronous reluctance machine rotors. IEEE Trans. Magn. (2020). https://doi.org/10.1109/TMAG.2020.3014289

    Article  Google Scholar 

  18. Yamashita, Y., Okamoto, Y.: Design optimization of synchronous reluctance motor for reducing iron loss and improving torque characteristics using topology optimization based on the level-set method. IEEE Trans. Magn. (2020). https://doi.org/10.1109/TMAG.2019.2954468

    Article  Google Scholar 

  19. Michalski, T., Acosta-Cambranis, F., Romeral, L., Zaragoza, J.: Multiphase PMSM and PMaSynRM flux map model with space harmonics and multiple plane cross harmonic saturation. In: 45th Annual conference of the IEEE industrial electronics society (IECON2019), Lisbon, Portugal, Portugal (2019). https://doi.org/10.1109/IECON.2019.8927421

  20. Sawada, H., Suzuki, R., Okamoto, Y., Wakao, Sh.: Optimization of rotor structure for synchronous reluctance motor using coupled topology optimization based on electromagnetic field analysis and structural mechanics. In: 19th International symposium on electromagnetic fields in mechatronics, electrical and electronic engineering (ISEF2019), Nancy, France (2019). https://doi.org/10.1109/ISEF45929.2019.9097069

  21. Babetto, C., Bacco, G., Bianchi, N.: Synchronous reluctance machine optimization for high-speed applications. IEEE Trans. Energy Convers. 33(3), 1266–1273 (2018). https://doi.org/10.1109/TEC.2018.2800536

    Article  Google Scholar 

  22. Babetto, C., Bianchi, N., López, C., Garcia, A., Romeral, L.: High-speed synchronous reluctance motors: computation of the power limits by means of reluctance networks. In: 18th International power electronics and motion control conference (PEMC2018), Budapest, Hungary (2018). https://doi.org/10.1109/EPEPEMC.2018.8521968

  23. López-Torres, C., Garcia, A., Riba, J.-R., Lux, G., Romeral, L.: Computationally efficient design and optimization approach of PMa-SynRM in Frequent operating torque-speed range. IEEE Trans. Energy Convers. 33(4), 1776–1786 (2018). https://doi.org/10.1109/TEC.2018.2831249

    Article  Google Scholar 

  24. Okamoto, Y., Hoshino, R., Wakao, Sh., Tsuburaya, T.: Improvement of torque characteristics for a synchronous reluctance motor using MMA-based topology optimization method. IEEE Trans. Magn. (2018). https://doi.org/10.1109/TMAG.2017.2762000

    Article  Google Scholar 

  25. Nardo, M.D., Calzo, G.L., Galea, M., Gerada, Ch.: Design optimization of a high-speed synchronous reluctance machine. IEEE Trans. Ind. Appl. 54(1), 233–243 (2018). https://doi.org/10.1109/TIA.2017.2758759

    Article  Google Scholar 

  26. Vagati, A., Boazzo, B., Guglielmi, P., Pellegrino, G.: Ferrite assisted synchronous reluctance machines: a general approach. In: XXth International conference on electrical machines (ICEM2012), Marseille, France (2012). https://doi.org/10.1109/ICElMach.2012.6350047

  27. López-Torres, C., Espinosa, A.G., Riba, J.-R., Romeral, L.: Design and optimization for vehicle driving cycle of rare-earth-free SynRM based on coupled lumped thermal and magnetic networks. IEEE Trans. Veh. Technol. 67(1), 196–205 (2018). https://doi.org/10.1109/TVT.2017.2739020

    Article  Google Scholar 

  28. Bonthu, S.S.R., Choi, S., Baek, J.: Comparisons of three-phase and five-phase permanent magnet assisted synchronous reluctance motors. IET Electr. Power Appl. 10(5), 347–355 (2016). https://doi.org/10.1049/iet-epa.2015.0268

    Article  Google Scholar 

  29. Toliyat, H.A., Waikar, S.P., Lipo, T.A.: Analysis and simulation of five-phase synchronous reluctance machines including third harmonic of air gap MMF. IEEE Trans. Ind. Appl. 34(2), 332–339 (1998). https://doi.org/10.1109/28.663476

    Article  Google Scholar 

  30. Toliyat, H.A., Xu, L., Lipo, T.A.: A five phase reluctance motor, with high specific torque. In: Conference record of the IEEE industry applications society annual meeting, Seattle, WA, USA (1990). https://doi.org/10.1109/IAS.1990.152188

  31. Mohammad, M.T., Fletcher, J.E.: Five-phase permanent magnet machines, advantages and applications. In: 5th IET int. conf. power electronics, machines and drives (PEMD2010), Brighton, UK (2010). https://doi.org/10.1049/cp.2010.0092

  32. Parsa, L., Toliyat, H.A.: Fault-tolerant interior-permanent-magnet machines for hybrid electric vehicle applications. IEEE Trans. Veh. Technol. 56(4), 1546–1552 (2007). https://doi.org/10.1109/TVT.2007.896978

    Article  Google Scholar 

  33. Baek, J., Bonthu, S.S.R., Choi, S.: Design of five-phase permanent magnet assisted synchronous reluctance motor for low output torque ripple applications. IET Electr. Power Appl. 10(5), 339–346 (2016). https://doi.org/10.1049/iet-epa.2015.0267

    Article  Google Scholar 

  34. Bilyi, V., Bilyi, D., Moros, O., Dajaku, G., Gerling, D.: Synchronous reluctance machine with multiphase stator cage winding. In: 20th International conference on electrical machines and systems (ICEMS2017), Sydney, NSW, Australia (2017). https://doi.org/10.1109/ICEMS.2017.8056518

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Moradian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, H., Moradian, M. Torque pulsation reduction in five-phase PMASyncRMs. J. Power Electron. 22, 128–137 (2022). https://doi.org/10.1007/s43236-021-00329-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00329-2

Keywords

Navigation