Skip to main content

Advertisement

Log in

Optimization in Magnetic Coupler Design for Inductively Coupled Wireless Charging of Electric Vehicle: A Review

  • Review Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Conventional automobiles are not eco-friendly; hence, a larger section of commuters expect battery electric vehicles (BEVs). BEVs are relatively safer and cleaner and invoke more constructive charging techniques for electric vehicles (EVs), including both wired and wireless approaches. Wired charging is common despite several serious problems, such as unkempt wiring and hazardous wet environmental conditions. In contrast, wireless charging is more convenient and adaptable regarding requirement of less conducting cables and facilitation of system mobility while dynamic mode of charging. Additionally, the nonexistence of physical galvanic connections is a noticeable advantage from the perspective of reliability, durability, low maintenance, and safety. Consequential from the above-mentioned unique advantages, primarily in general the inductively coupled wireless power transmission system is often used for the wireless charging of batteries in an EV. While showing this merit, this paper discusses a broad review of the general charging topologies for EV, different power pad structures and their features. Further, the magnetic core’s shape and features, various compensation topologies and their feature are discussed. Different optimization techniques are presented and investigated regarding optimization of critical parameters. Majorly transmission power, transmission efficiency, transmission distance, loss of magnetic coupler and the electromagnetic field exposure in the neighboring environment are highlighted to maximize the effectiveness of the magnetic coupler and decrease the effect of WPT on the environment. Moreover, this review suggests different optimization algorithms for designing power pads for the wireless charging of EVs. Finally, the wireless charging issues and remedial measures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

DC:

Direct current

AC:

Alternating current

AFE:

Adaptive front end

TC:

Transmitting coil

RC:

Receiving coil

HFT:

High-frequency transformer

BSS:

Battery swap station

EV:

Electric vehicle

BEV:

Battery electric vehicle

V2G:

Vehicle-to-grid

WPT:

Wireless power transmission

IPT:

Inductive power transmission

ICWPT:

Inductively coupled wireless power transmission

WPTT:

Wireless power transfer technology

MRC:

Magnetic resonant charging

RIPT:

Resonant inductive power transmission

DWPT:

Dynamic wireless power transfer

EMF:

Electromagnetic field

CC:

Constant current

CV:

Constant voltage

CP:

Circular pad

RP:

Rectangular pad

BP:

Bipolar pad

DD:

Double-D

DDQ:

Double-D quadrature

TP:

Tripolar

SWC:

Static wireless charging

DWC:

Dynamic wireless charging

PATH:

Partners for advanced transit and highways

M:

Mutual Inductance

K:

Coupling coefficient

TP:

Transmitting power

TE:

Transmitting efficiency

TD:

Transmitting distance

SS:

Series–series

SP:

Series–parallel

PP:

Parallel–parallel

PS:

Parallel–series

LCL:

Inductor(L)–Capacitor(C)–Inductor(L)

LCC:

Inductor(L)–Capacitor(C)–Capacitor(C)

LCCL:

Inductor(L)–Capacitor(C)–Capacitor(C)—Inductor(L)

FEA:

Finite element analysis

1-D:

One-dimensional

2-D:

Two-dimensional

3-D:

Three-dimensional

PFS:

Pareto front solution

PSO:

Particle swarm optimization

MOHPSO:

Multi-objective hybrid particle swarm optimization

MORPSO:

Multi-objective real-numbered particle swarm optimization

References

  1. Liu, X.: Dynamic response characteristics of fast charging station-evs on interaction of multiple vehicles. IEEE Access 8, 42404–42421 (2020). https://doi.org/10.1109/ACCESS.2020.2977460

    Article  Google Scholar 

  2. Jing, H.; Jia, F.; Liu, Z.: Multi-objective optimal control allocation for an over-Actuated electric vehicle. IEEE Access 6, 4824–4833 (2017). https://doi.org/10.1109/ACCESS.2017.2788941

    Article  Google Scholar 

  3. Li, G.; Sun, Q.; Boukhatem, L.; Wu, J.; Yang, J.: Intelligent vehicle-to-vehicle charging navigation for mobile electric vehicles via vanet-based communication. IEEE Access 7, 170888–170906 (2019). https://doi.org/10.1109/ACCESS.2019.2955927

    Article  Google Scholar 

  4. https://www.atob.com/blog/ice-vs-ev-vehicles-effects-on-the-environment -- accessed on 29th May, 2023

  5. Wireless Power Transfer for Electric Vehicles and Mobile Devices | IEEE eBooks | IEEE Xplore. https://ieeexplore.ieee.org/book/7953908 (accessed Sep. 22, 2022)

  6. Khaligh, A.; Dusmez, S.: Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Trans. Veh. Technol. 61(8), 3475–3489 (2012). https://doi.org/10.1109/TVT.2012.2213104

    Article  Google Scholar 

  7. Kabalo M, Berthold F, Blunier B, Bouquain D, Williamson S, Miraoui A.: Efficiency comparison of wire and wireless battery charging: Based on connection probability analysis. In: 2014 IEEE Transportation Electrification Conference and Expo (ITEC) 2014 Jun 15 (pp. 1–6). IEEE

  8. Bi, Z.; Song, L.; De Kleine, R.; Mi, C.C.; Keoleian, G.A.: Plug-in vs wireless charging: life cycle energy and greenhouse gas emissions for an electric bus system. Appl. Energy. 146, 11–19 (2015)

    Article  Google Scholar 

  9. “Apparatus for transmitting electrical energy.” May 1907

  10. Sadiku, M.N.O.: Elements of Electromagnetics. Environmental Engineering. 17(c), (2000)

  11. Aditya, K.; Williamson, S.S.: A review of optimal conditions for achieving maximum power output and maximum efficiency for a series-series resonant inductive link. IEEE Trans. Transp. Electrific. (2017). https://doi.org/10.1109/TTE.2016.2582559

    Article  Google Scholar 

  12. Wei, X.; Wang, Z.; Dai, H.: A critical review of wireless power transfer via strongly coupled magnetic resonances. Energies (2014). https://doi.org/10.3390/en7074316

    Article  Google Scholar 

  13. Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljačić, M.: Wireless power transfer via strongly coupled magnetic resonances. Science (1979) 317(5834), 83–86 (2007). https://doi.org/10.1126/SCIENCE.1143254/SUPPL_FILE/KURS.SOM.PDF

    Article  MathSciNet  Google Scholar 

  14. Ahmad, A.; Khan, Z.A.; Alam, M.S.; Khateeb, S.: A review of the electric vehicle charging techniques, standards, progression and evolution of EV technologies in Germany. Smart Sci. 6(1), 36–53 (2017). https://doi.org/10.1080/23080477.2017.1420132

    Article  Google Scholar 

  15. Brenna, M.; Foiadelli, F.; Zaninelli, D.; Graditi, G.; di Somma, M.: The integration of electric vehicles in smart distribution grids with other distributed resources. Distrib. Energy Resour. Local Integr. Energy Syst. Optim. Oper. Plan. (2021). https://doi.org/10.1016/B978-0-12-823899-8.00006-6

    Article  Google Scholar 

  16. Erdinc, O.; Tascikaraoglu, A.; Paterakis, N.G.; Dursun, I.; Sinim, M.C.; Catalao, J.P.S.: Comprehensive optimization model for sizing and siting of DG units, EV charging stations, and energy storage systems. IEEE Trans. Smart Grid. (2018). https://doi.org/10.1109/TSG.2017.2777738

    Article  Google Scholar 

  17. Li T. et al. 2018. An optimal design and analysis of a hybrid power charging station for electric vehicles considering uncertainties. In: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society. doi: https://doi.org/10.1109/IECON.2018.8592855

  18. Negarestani, S.; Fotuhi-Firuzabad, M.; Rastegar, M.; Rajabi-Ghahnavieh, A.: Optimal sizing of storage system in a fast charging station for plug-in hybrid electric vehicles. IEEE Trans. Transp. Electrific. 2(4), 443–453 (2016). https://doi.org/10.1109/TTE.2016.2559165

    Article  Google Scholar 

  19. Yoldaş, Y.; Önen, A.; Muyeen, S.M.; Vasilakos, A.V.; Alan, İ: Enhancing smart grid with microgrids: challenges and opportunities. Renew. Sustain. Energy Rev. (2017). https://doi.org/10.1016/j.rser.2017.01.064

    Article  Google Scholar 

  20. Dharmakeerthi, C.H.; Mithulananthan, N.; Saha, T.K.: Impact of electric vehicle fast charging on power system voltage stability. Int. J. Electr. Power Energy Syst. 57, 241 (2014). https://doi.org/10.1016/j.ijepes.2013.12.005

    Article  Google Scholar 

  21. Habib, S.; Khan, M.M.; Abbas, F.; Sang, L.; Shahid, M.U.; Tang, H.: A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles. IEEE Access 6, 13866–13890 (2018). https://doi.org/10.1109/ACCESS.2018.2812303

    Article  Google Scholar 

  22. Yang, Y.; Zhang, W.; Niu, L.; Jiang, J.: Coordinated charging strategy for electric taxis in temporal and spatial scale. Energies (Basel) 8(2), 1256 (2015). https://doi.org/10.3390/en8021256

    Article  Google Scholar 

  23. Arif, S.M.; Lie, T.T.; Seet, B.C.; Ahsan, S.M.; Khan, H.A.: Plug-in electric bus depot charging with PV and ESS and their impact on LV feeder. Energies (Basel). 13(9), 2139 (2020). https://doi.org/10.3390/en13092139

    Article  Google Scholar 

  24. Arif, S.M.; Lie, T.T.; Seet, B.C.; Ayyadi, S.: A novel and cost-efficient energy management system for plug-in electric bus charging depot owners. Electr. Power Syst. Res. (2021). https://doi.org/10.1016/j.epsr.2021.107413

    Article  Google Scholar 

  25. Meishner, F., Satvat, B. and Sauer, D.U.: Battery electric buses in european cities: economic comparison of different technological concepts based on actual demonstrations. In: 2017 IEEE Vehicle Power and Propulsion Conference, VPPC 2017 - Proceedings, 2018, vol. 2018-January. doi: https://doi.org/10.1109/VPPC.2017.8331012

  26. Carrilero, I.; González, M.; Anseán, D.; Viera, J.C.; Chacón, J.; Pereirinha, P.G.: Redesigning European public transport: impact of new battery technologies in the design of electric bus fleets. Transp. Res. Procedia. 33, 195–202 (2018). https://doi.org/10.1016/j.trpro.2018.10.092

    Article  Google Scholar 

  27. Mohammed, S.A.Q.; Jung, J.W.: A comprehensive state-of-the-art review of wired/wireless charging technologies for battery electric vehicles: classification/common topologies/future research issues. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3055027

    Article  Google Scholar 

  28. Wu, H.H.; Gilchrist, A.; Sealy, K.D.; Bronson, D.: A high efficiency 5 kW inductive charger for EVs using dual side control. IEEE Trans. Industr. Inform. 8(3), 585–5495 (2012). https://doi.org/10.1109/TII.2012.2192283

    Article  Google Scholar 

  29. Zhu, Q.; Wang, L.; Guo, Y.; Liao, C.; Li, F.: Applying LCC compensation network to dynamic wireless EV charging system. IEEE Trans. Ind. Electron. 63(10), 6657–6567 (2016). https://doi.org/10.1109/TIE.2016.2529561

    Article  Google Scholar 

  30. Liu, N. and Habetler, T.G.: A study of designing a universal inductive charger for Electric Vehicles. In: 2013. doi: https://doi.org/10.1109/IECON.2013.6699865

  31. Neves, A., Sousa, D.M., Roque, A., and Terras, J. M.: Analysis of an inductive charging system for a commercial electric vehicle. (2011)

  32. Peschiera, B. and Williamson, S. S.: Review and comparison of inductive charging power electronic converter topologies for electric and plug-in hybrid electric vehicles. 2013. doi: https://doi.org/10.1109/ITEC.2013.6573474

  33. Wu, H. H., Gilchrist, A., Sealy, K. and Bronson, D.: A 90 percent efficient 5kW inductive charger for EVs. 2012. doi: https://doi.org/10.1109/ECCE.2012.6342812

  34. Niu, S.; Xu, H.; Sun, Z.; Shao, Z.Y.; Jian, L.: The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies. Renew. Sustain. Energy Rev. 114, 109302 (2019). https://doi.org/10.1016/j.rser.2019.109302

    Article  Google Scholar 

  35. “Qualcomm Sells Off Halo Wireless EV Charging Technology - EETimes.” https://www.eetimes.com/qualcomm-sells-off-halo-wireless-ev-charging-technology/ (accessed Sep. 24, 2022)

  36. ORNL Demonstrates Bi-Directional Wireless Charging on Hybrid UPS Truck - News. https://eepower.com/news/ornl-demonstrates-bi-directional-wireless-charging-on-hybrid-ups-truck/# (accessed Sep. 24, 2022)

  37. Vincent, D.; Huynh, P.S.; Azeez, N.A.; Patnaik, L.; Williamson, S.S.: Evolution of hybrid inductive and capacitive AC links for wireless EV charging—a comparative overview. IEEE Trans. Transp. Electrific. 5(4), 1060–1077 (2019). https://doi.org/10.1109/TTE.2019.2923883

    Article  Google Scholar 

  38. Al-Saadi, M.; Al-Bahrani, L.; Al-Qaisi, M.; Al-Chlaihawi, S.; Crăciunescu, A.: Capacitive power transfer for wireless batteries charging. EEA—Electrotehn., Electron., Autom. 66(4), 40–51 (2018)

    Google Scholar 

  39. Regensburger, B., Kumar, A., Sinha, S. and Afridi, K.: In: High-performance 13.56-MHz large air-gap capacitive wireless power transfer system for electric vehicle charging. 2018. doi: https://doi.org/10.1109/COMPEL.2018.8460153.

  40. Sinha, S.; Kumar, A.; Regensburger, B.; Afridi, K.K.: A new design approach to mitigating the effect of parasitics in capacitive wireless power transfer systems for electric vehicle charging. IEEE Trans. Transp. Electrific. 5(4), 1040–1059 (2019). https://doi.org/10.1109/TTE.2019.2931869

    Article  Google Scholar 

  41. Lukic, S.; Pantic, Z.: Cutting the cord: static and dynamic inductive wireless charging of electric vehicles. IEEE Electrific. Mag. (2013). https://doi.org/10.1109/mele.2013.2273228

    Article  Google Scholar 

  42. “(PDF) State of the Art in Inductive Charging for Electronic Appliances and its Future in Transportation.” https://www.researchgate.net/publication/267842615_State_of_the_Art_in_Inductive_Charging_for_Electronic_Appliances_and_its_Future_in_Transportation (accessed Sep. 25, 2022)

  43. Siddique, N.I.; Abdullah, S.M.; Nafees, Q.; Islam, U.: A comprehensive overview on the development of compensation topologies for capacitive power transfer system. Electr. Electron. Eng. 9(1), 9–16 (2019)

    Google Scholar 

  44. Vu et al., V.B: In: A multi-output capacitive charger for electric vehicles. 2017. doi: https://doi.org/10.1109/ISIE.2017.8001308.

  45. Fisher, T.M.; Blair Farley, K.; Gao, Y.; Bai, H.; Tse, Z.T.H.: Electric vehicle wireless charging technology: a state-of-the-art review of magnetic coupling systems. Wirel. Power Transf. 1(2), 87–96 (2014). https://doi.org/10.1017/wpt.2014.8

    Article  Google Scholar 

  46. Vincent, D., Sang, P.H. and Williamson, S.S.: Feasibility study of hybrid inductive and capacitive wireless power transfer for future transportation. 2017. doi: https://doi.org/10.1109/ITEC.2017.7993276

  47. Qiu, C., Chau, K.T., Liu, C., and Chan, C.C.: Overview of wireless power transfer for electric vehicle charging. 2014. doi: https://doi.org/10.1109/EVS.2013.6914731

  48. Zhang, Q.; Fang, W.; Liu, Q.; Wu, J.; Xia, P.; Yang, L.: Distributed laser charging: a wireless power transfer approach. IEEE Internet Things J. 5(5), 3853–3864 (2018). https://doi.org/10.1109/JIOT.2018.2851070

    Article  Google Scholar 

  49. Summerer, L. and Purcell, O.: Concepts for Wireless Energy Transmission via Laser. In: ESA-Advanced Concepts Team, (2008)

  50. Li, K. R., See, K.Y., Koh, W.J., and Zhang, J.W.: Design of 2.45 GHz microwave wireless power transfer system for battery charging applications. In: Progress in Electromagnetics Research Symposium, 2017, vol. 2017-November. doi: https://doi.org/10.1109/PIERS-FALL.2017.8293542

  51. Shinohara, N.: Wireless Power Transfer via Radiowaves`, p. 9781848216051. Wiley, Hoboken (2014)

    Google Scholar 

  52. Shinohara, N., Kubo, Y. Tonomura, H.: Wireless charging for electric vehicle with microwaves. 2013. doi: https://doi.org/10.1109/EDPC.2013.6689750

  53. Itu-r, “Applications of wireless power transmission via radio frequency beam SM Series Spectrum management,” 2016, Accessed: Sep. 25, 2022. [Online]. Available: http://www.itu.int/ITU-R/go/patents/en

  54. Shinohara, N.: Beam efficiency of wireless power transmission via radio waves from short range to long range. J Electromag. Eng. Sci. 10(4), 224–230 (2010). https://doi.org/10.5515/jkiees.2010.10.4.224

    Article  Google Scholar 

  55. Batool, U., Rehman, A., Khalil, N., Islam, M., Afzal, M.U. and Tauqeer, T.: Energy extraction from RF/microwave signal. (2012). doi: https://doi.org/10.1109/INMIC.2012.6511489

  56. S. Riviere, F. Alicalapa, A. Douyere, and J. D. Lan Sun Luk, “A compact rectenna device at low power level,” Progress In Electromagnetics Research C, vol. 16, 2010, doi: https://doi.org/10.2528/PIERC10071604.

  57. Brown, W.C.: The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32(9), 1240–1242 (1984). https://doi.org/10.1109/TMTT.1984.1132833

    Article  Google Scholar 

  58. Al-Lawati, M., Al-Busaidi, M. and Nadir, Z. RF energy harvesting system design for wireless sensors. 2012. doi: https://doi.org/10.1109/SSD.2012.6197969

  59. Arrawatia, M., Baghini, M. S. and Kumar G.: RF energy harvesting system from cell towers in 900MHz band. (2011). doi: https://doi.org/10.1109/NCC.2011.5734733

  60. Kim, J.; Son, H.C.; Kim, K.H.; Park, Y.J.: Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil. IEEE Antennas Wirel. Propag. Lett. 10, 389–392 (2011). https://doi.org/10.1109/LAWP.2011.2150192

    Article  Google Scholar 

  61. Ahmad, A.; Alam, M.S.: Magnetic analysis of copper coil power pad with ferrite core for wireless charging application. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-018-00091-6

    Article  Google Scholar 

  62. Covic, G.A.; Boys, J.T.: Modern trends in inductive power transfer for transportation applications. IEEE J. Emerg. Sel. Top Power Electron. (2013). https://doi.org/10.1109/JESTPE.2013.2264473

    Article  Google Scholar 

  63. Kim, C.G.; Seo, D.H.; You, J.S.; Park, J.H.; Cho, B.H.: Design of a contactless battery charger for cellular phone. IEEE Trans. Ind. Electron. 48(6), 1238–1247 (2001). https://doi.org/10.1109/41.969404

    Article  Google Scholar 

  64. Patil, D.; McDonough, M.K.; Miller, J.M.; Fahimi, B.; Balsara, P.T.: Wireless power transfer for vehicular applications: overview and challenges. IEEE Trans. Transp. Electrific. (2017). https://doi.org/10.1109/TTE.2017.2780627

    Article  Google Scholar 

  65. Budhia, M.; Covic, G.A.; Boys, J.T.: Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans. Power Electron. 26(11), 3096–3108 (2011). https://doi.org/10.1109/TPEL.2011.2143730

    Article  Google Scholar 

  66. Moon, S.; Kim, B.C.; Cho, S.Y.; Ahn, C.H.; Moon, G.W.: Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency. IEEE Trans. Ind. Electron. 61(11), 5861–5870 (2014). https://doi.org/10.1109/TIE.2014.2301762

    Article  Google Scholar 

  67. Deng, J.; Li, W.; Nguyen, T.D.; Li, S.; Mi, C.C.: Compact and efficient bipolar coupler for wireless power chargers: design and analysis. IEEE Trans. Power Electron. 30(11), 6130–6140 (2015). https://doi.org/10.1109/TPEL.2015.2417115

    Article  Google Scholar 

  68. Moon, S.C.; Moon, G.W.: Wireless power transfer system with an asymmetric four-coil resonator for electric vehicle battery chargers. IEEE Trans. Power Electron. (2016). https://doi.org/10.1109/TPEL.2015.2506779

    Article  Google Scholar 

  69. Tejeda, A.; Kim, S.; Lin, F.Y.; Covic, G.A.; Boys, J.T.: A hybrid solenoid coupler for wireless charging applications. IEEE Trans. Power Electron. 34(6), 5632–5645 (2019). https://doi.org/10.1109/TPEL.2018.2867430

    Article  Google Scholar 

  70. Chowdhury, M.S.A.; Liang, X.: Design and performance evaluation for a new power pad in electric vehicles wireless charging systems. Can. J. Electr. Comput. Eng. 43(3), 146–156 (2020). https://doi.org/10.1109/CJECE.2020.2966148

    Article  Google Scholar 

  71. Chen, W.; Liu, C.; Lee, C.H.T.; Shan, Z.: Cost-effectiveness comparison of coupler designs of wireless power transfer for electric vehicle dynamic charging. Energies (Basel) 9(11), 906 (2016). https://doi.org/10.3390/en9110906

    Article  Google Scholar 

  72. Chatterjee, S.; Iyer, A.; Bharatiraja, C.; Vaghasia, I.; Rajesh, V.: Design optimisation for an efficient wireless power transfer system for electric vehicles. Energy Procedia. 117, 1015–1023 (2017). https://doi.org/10.1016/j.egypro.2017.05.223

    Article  Google Scholar 

  73. Yang, Y.; Cui, J.; Cui, X.: Design and analysis of magnetic coils for optimizing the coupling coefficient in an electric vehicle wireless power transfer system. Energies (Basel) 13(6), 4143 (2020). https://doi.org/10.3390/en13164143

    Article  Google Scholar 

  74. Bouanou, T.; el Fadil, H.; Lassioui, A.; Assaddiki, O.; Njili, S.: Analysis of coil parameters and comparison of circular, rectangular, and hexagonal coils used in wpt system for electric vehicle charging. World Electr. Veh. J. 12(1), 45 (2021). https://doi.org/10.3390/wevj12010045

    Article  Google Scholar 

  75. Matsumoto, H.; Neba, Y.; Iura, H.; Tsutsumi, D.; Ishizaka, K.; Itoh, R.: Trifoliate three-phase contactless power transformer in case of winding-alignment. IEEE Trans. Ind. Electron. 61(1), 53–62 (2014). https://doi.org/10.1109/TIE.2013.2242421

    Article  Google Scholar 

  76. Li, H.; Liu, Y.; Zhou, K.; He, Z.; Li, W.; Mai, R.: Uniform power IPT system with three-phase transmitter and bipolar receiver for dynamic charging. IEEE Trans. Power Electron. 34(3), 2013–2017 (2019). https://doi.org/10.1109/TPEL.2018.2864781

    Article  Google Scholar 

  77. Mohamed, A.A.S.; Shaier, A.A.; Metwally, H.; Selem, S.I.: A comprehensive overview of inductive pad in electric vehicles stationary charging. Appl. Energy 262, 114584 (2020). https://doi.org/10.1016/j.apenergy.2020.114584

    Article  Google Scholar 

  78. California PATH Program, Roadway powered electric vehicle project track construction and testing program phase 3D. Traffic, (1994)

  79. Shin, J., et al.: Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans. Ind. Electron. 61(3), 1179–1192 (2014). https://doi.org/10.1109/TIE.2013.2258294

    Article  Google Scholar 

  80. Huh, J.; Lee, S.W.; Lee, W.Y.; Cho, G.H.; Rim, C.T.: Narrow-width inductive power transfer system for online electrical vehicles. IEEE Trans. Power Electron. 26(12), 36666–43679 (2011). https://doi.org/10.1109/TPEL.2011.2160972

    Article  Google Scholar 

  81. Choi, S.Y.; Jeong, S.Y.; Gu, B.W.; Lim, G.C.; Rim, C.T.: Ultraslim S-type power supply rails for roadway-powered electric vehicles. IEEE Trans. Power Electron. (2015). https://doi.org/10.1109/tpel.2015.2444894

    Article  Google Scholar 

  82. Zaheer, A.; Neath, M.; Beh, H.Z.; Covic, G.A.: A dynamic EV charging system for slow moving traffic applications. IEEE Trans. Transp. Electrific. 3(2), 354–369 (2017). https://doi.org/10.1109/TTE.2016.2628796

    Article  Google Scholar 

  83. Zhang, P.; Saeedifard, M.; Onar, O.C.; Yang, Q.; Cai, C.: A field enhancement integration design featuring misalignment tolerance for wireless EV charging using LCL topology. IEEE Trans. Power Electron. 36(4), 3852–3867 (2021). https://doi.org/10.1109/TPEL.2020.3021591

    Article  Google Scholar 

  84. Corti F. et al. A Comprehensive comparison of resonant topologies for magnetic wireless power transfer. 2020. doi: https://doi.org/10.1109/MELECON48756.2020.9140657

  85. Byeon, J., Kang, M., Kim, M., Joo, D.M. and Lee, B.K.: Hybrid control of inductive power transfer charger for electric vehicles using LCCL-S resonant network in limited operating frequency range. 2016. doi: https://doi.org/10.1109/ECCE.2016.7855168.

  86. Esteban, B.; Sid-Ahmed, M.; Kar, N.C.: A comparative study of power supply architectures in wireless EV charging systems. IEEE Trans. Power Electron. 30(11), 6408–6422 (2015). https://doi.org/10.1109/TPEL.2015.2440256

    Article  Google Scholar 

  87. Moghaddami, M., Anzalchi, A., Moghadasi, A. and Sarwat, A.: Pareto optimization of circular power pads for contactless electric vehicle battery charger. (2016). doi: https://doi.org/10.1109/IAS.2016.7731853

  88. Sekiya, N.; Monjugawa, Y.: A novel REBCO wire structure that improves coil quality factor in MHz range and its effect on wireless power transfer systems. IEEE Trans. Appl. Supercond. (2017). https://doi.org/10.1109/TASC.2017.2660058

    Article  Google Scholar 

  89. Bosshard, R., Muhlethaler, J., Kolar, J. W. and Stevanovic, I.: Optimized magnetic design for inductive power transfer coils. (2013). doi: https://doi.org/10.1109/APEC.2013.6520541

  90. Jeong, I.S.; Lee, Y.K.; Choi, H.S.: Improvement of transmission distance by using ferrite in superconductive wireless power transfer. J. Supercond. Nov. Magn. 30(10), 2971–2975 (2017). https://doi.org/10.1007/s10948-016-3951-y

    Article  Google Scholar 

  91. Li, Y.; Mai, R.; Lin, T.; Sun, H.; He, Z.: A novel WPT system based on dual transmitters and dual receivers for high power applications: analysis, design and implementation. Energies (Basel) 10(2), 174 (2017). https://doi.org/10.3390/en10020174

    Article  Google Scholar 

  92. Zhao, L.; Thrimawithana, D.J.; Madawala, U.K.: Hybrid bidirectional wireless EV charging system tolerant to pad misalignment. IEEE Trans. Ind. Electron. 64(9), 7079–7086 (2017). https://doi.org/10.1109/TIE.2017.2686301

    Article  Google Scholar 

  93. Dai, Z.; Wang, J.; Long, M.; Huang, H.: A witricity-based high-power device for wireless charging of electric vehicles. Energies (Basel) 10(3), 323 (2017). https://doi.org/10.3390/en10030323

    Article  Google Scholar 

  94. Li, Z.; Zhu, C.; Jiang, J.; Song, K.; Wei, G.: A 3-kW wireless power transfer system for sightseeing car supercapacitor charge. IEEE Trans. Power Electron. 32(5), 3301–3316 (2017). https://doi.org/10.1109/TPEL.2016.2584701

    Article  Google Scholar 

  95. Maaß, M.; Griessner, A.; Steixner, V.; Zierhofer, C.: Reduction of eddy current losses in inductive transmission systems with ferrite sheets. Biomed. Eng. Online (2017). https://doi.org/10.1186/s12938-016-0297-4

    Article  Google Scholar 

  96. Park, J., et al.: A resonant reactive shielding for planar wireless power transfer system in smartphone application. IEEE Trans. Electromagn. Compat 59(2), 695–703 (2017). https://doi.org/10.1109/TEMC.2016.2636863

    Article  MathSciNet  Google Scholar 

  97. Tejeda, A.; Carretero, C.; Boys, J.T.; Covic, G.A.: Ferrite-less circular pad with controlled flux cancelation for EV wireless charging. IEEE Trans. Power Electron. 32(11), 8349–8359 (2017). https://doi.org/10.1109/TPEL.2016.2642192

    Article  Google Scholar 

  98. Sun, K., et al.: An overview of metamaterials and their achievements in wireless power transfer. J. Mater. Chem. C 6(12), 2925–2943 (2018). https://doi.org/10.1039/c7tc03384b

    Article  Google Scholar 

  99. Zhang, Z.; Zhang, B.; Deng, B.; Wei, X.; Wang, J.: Opportunities and challenges of metamaterial-based wireless power transfer for electric vehicles. Wirel. Power Transf. 5(1), 9–10 (2018). https://doi.org/10.1017/wpt.2017.12

    Article  Google Scholar 

  100. Xin, W.; Mi, C.C.; He, F.; Jiang, M.; Hua, D.: Investigation of negative permeability metamaterials for wireless power transfer. AIP Adv. (2017). https://doi.org/10.1063/1.5010218

    Article  Google Scholar 

  101. Dong, Y., Li, W., Cai, W., Yao, C., Ma, D. and Tang, H.: Experimental investigation of 6.78MHz metamaterials for efficiency enhancement of wireless power transfer system. (2016). doi: https://doi.org/10.1109/SPEC.2016.7846011

  102. Li, W., Wang, P., Yao, C., Zhang, Y. and Tang, H.: Experimental investigation of 1D, 2D, and 3D metamaterials for efficiency enhancement in a 6.78MHz wireless power transfer system. 2016. doi: https://doi.org/10.1109/WPT.2016.7498809

  103. Gámez Rodríguez, E.S.; RamRakhyani, A.K.; Schurig, D.; Lazzi, G.: Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement. IEEE Trans. Microw. Theory Tech. 64(5), 1644–1654 (2016). https://doi.org/10.1109/TMTT.2016.2549526

    Article  Google Scholar 

  104. Li, L.; Liu, H.; Zhang, H.; Xue, W.: Efficient wireless power transfer system integrating with metasurface for biological applications. IEEE Trans. Ind. Electron. 65(4), 3230–3239 (2018). https://doi.org/10.1109/TIE.2017.2756580

    Article  Google Scholar 

  105. Zhou, J., Zhang, P., Han, J., Li, L. and Huang, Y.: Metamaterials and Metasurfaces for Wireless Power Transfer and Energy Harvesting. In: Proceedings of the IEEE, vol. 110, no. 1, 2022, doi: https://doi.org/10.1109/JPROC.2021.3127493

  106. Yao, C.; Ma, Y.: Superconducting materials: challenges and opportunities for large-scale applications. Iscience. 24(6), 102541 (2021)

    Article  Google Scholar 

  107. Wang, X.; Nie, X.; Liang, Y.; Lu, F.; Yan, Z.; Wang, Y.: Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system. Phys. C: Supercond. Appl. 532, 6–12 (2017). https://doi.org/10.1016/j.physc.2016.11.006

    Article  Google Scholar 

  108. Wang, X.; Wang, Y.; Fan, G.; Hu, Y.; Nie, X.; Yan, Z.: Experimental and numerical study of a magnetic resonance wireless power transfer system using superconductor and ferromagnetic metamaterials. IEEE Trans. Appl. Supercond. 28(5), 1–6 (2018). https://doi.org/10.1109/TASC.2018.2825305

    Article  Google Scholar 

  109. Jeong, I.S.; Choi, H.W.; Choi, H.S.; Chung, D.C.: Analysis of S-parameter using different materials for the WPT resonance coil. IEEE Trans. Appl. Supercond. 28(3), 1–5 (2018). https://doi.org/10.1109/TASC.2018.2801299

    Article  Google Scholar 

  110. Yu, H.; Zhang, G.; Liu, G.; Jing, L.; Liu, Q.: Asymmetry in wireless power transfer between a superconducting coil and a copper coil. IEEE Trans. Appl. Supercond.. (2018). https://doi.org/10.1109/TASC.2018.2789891

    Article  Google Scholar 

  111. Heo, E.; Choi, K.Y.; Kim, J.; Park, J.H.; Lee, H.: A wearable textile antenna for wireless power transfer by magnetic resonance. Text. Res. J. 88(8), 913–921 (2018). https://doi.org/10.1177/0040517517690626

    Article  Google Scholar 

  112. Kang, S.H.; Jung, C.W.: Textile resonators with thin copper wire for wearable MR-WPT system. IEEE Microw. Wirel. Compon. Lett. 27(1), 91–93 (2017). https://doi.org/10.1109/LMWC.2016.2629976

    Article  Google Scholar 

  113. Luo, Z.; Wei, X.; Pearce, M.G.S.; Covic, G.A.: Multiobjective optimization of inductive power transfer double-D pads for electric vehicles. IEEE Trans. Power Electron. 36(5), 5135–5146 (2021). https://doi.org/10.1109/TPEL.2020.3029789

    Article  Google Scholar 

  114. Grabham, N.J.; Li, Y.; Clare, L.R.; Stark, B.H.; Beeby, S.P.: Fabrication techniques for manufacturing flexible coils on textiles for inductive power transfer. IEEE Sens. J. 18(6), 2599–2606 (2018). https://doi.org/10.1109/JSEN.2018.2796138

    Article  Google Scholar 

  115. Chen, Z.; Jing, W.; Huang, X.; Tan, L.; Chen, C.; Wang, W.: A promoted design for primary coil in roadway-powered system. IEEE Trans. Magn. (2015). https://doi.org/10.1109/TMAG.2015.2440481

    Article  Google Scholar 

  116. Zhang, W.; Siu-Chung Wong, C.K.; Tse, C.K.; Chen, Q.: An optimized track length in roadway inductive power transfer systems. IEEE J. Emerg. Sel. Top Power Electron. 2(3), 598–608 (2014). https://doi.org/10.1109/jestpe.2014.2301460

    Article  Google Scholar 

  117. Choi, S.Y.; Gu, B.W.; Jeong, S.Y.; Rim, C.T.: Advances in wireless power transfer systems for roadway-powered electric vehicles. IEEE J. Emerg. Sel. Top Power Electron. 3(1), 18–36 (2015). https://doi.org/10.1109/JESTPE.2014.2343674

    Article  Google Scholar 

  118. Mi, C.C.; Buja, G.; Choi, S.Y.; Rim, C.T.: Modern advances in wireless power transfer systems for roadway powered electric vehicles. IEEE Trans. Ind. Electron. 63(10), 6533–6545 (2016). https://doi.org/10.1109/TIE.2016.2574993

    Article  Google Scholar 

  119. Ojika, S.; Miura, Y.; Ise, T.: Evaluation of inductive contactless power transfer outlet with coaxial coreless transformer. Electr. Eng. Jpn. (English translation of Denki Gakkai Ronbunshi) 195(2), 57–67 (2016). https://doi.org/10.1002/eej.22819

    Article  Google Scholar 

  120. Wang, S.; Dorrell, D.G.: Loss analysis of circular wireless EV charging coupler. IEEE Trans. Magn. 50(11), 1–4 (2014). https://doi.org/10.1109/TMAG.2014.2334895

    Article  Google Scholar 

  121. Xu, J.; Xu, Y.; Zhang, Q.: Calculation and analysis of optimal design for wireless power transfer. Comput. Electr. Eng. 80, 106470 (2019). https://doi.org/10.1016/j.compeleceng.2019.106470

    Article  Google Scholar 

  122. Luo, Z.; Wei, X.: Analysis of square and circular planar spiral coils in wireless power transfer system for electric vehicles. IEEE Trans. Ind. Electron. 65(1), 331–341 (2018). https://doi.org/10.1109/TIE.2017.2723867

    Article  MathSciNet  Google Scholar 

  123. Yang, Z., et al.: Research on parameter optimization of Double-D coils for electric vehicle wireless charging based on magnetic circuit analysis. IEICE Electron Exp. (2020). https://doi.org/10.1587/ELEX.17.20200067

    Article  Google Scholar 

  124. Mou, X.; Gladwin, D.T.; Zhao, R.; Sun, H.; Yang, Z.: Coil design for wireless vehicle-to-vehicle charging systems. IEEE Access 8, 172723–172733 (2020). https://doi.org/10.1109/ACCESS.2020.3025787

    Article  Google Scholar 

  125. Nguyen, D.H.: Electric vehicle-wireless charging-discharging lane decentralized peer-to-peer energy trading. IEEE Access 8, 179616–179625 (2020). https://doi.org/10.1109/ACCESS.2020.3027832

    Article  Google Scholar 

  126. Massa, A., Oliveri, G., Viani, F. and Rocca, P.: Array designs for long-distance wireless power transmission: State-of-the-art and innovative solutions. In: Proceedings of the IEEE, vol. 101, no. 6. (2013). doi: https://doi.org/10.1109/JPROC.2013.2245491

  127. Shizuno, K., Yoshida, S., Tanomura, M. and Hama, Y.: Long distance high efficient underwater wireless charging system using dielectric-assist antenna. (2015). doi: https://doi.org/10.1109/OCEANS.2014.7002986

  128. Asa, E., Mohammad, M., Onar, O. C., Pries, J., Galigekere, V. and Su, G. J.: Review of Safety and Exposure Limits of Electromagnetic Fields (EMF) in Wireless Electric Vehicle Charging (WEVC) Applications. In: 2020 IEEE Transportation Electrification Conference and Expo, ITEC 2020, 2020. doi: https://doi.org/10.1109/ITEC48692.2020.9161597

  129. Mou, X.; Zhang, Y.; Jiang, J.; Sun, H.: Achieving low carbon emission for dynamically charging electric vehicles through renewable energy integration. IEEE Access 7, 118876–118888 (2019). https://doi.org/10.1109/ACCESS.2019.2936935

    Article  Google Scholar 

  130. Xiang, L.; Li, X.; Tian, J.; Tian, Y.: A crossed DD geometry and its double-coil excitation method for electric vehicle dynamic wireless charging systems. IEEE Access 6, 45120–45128 (2018). https://doi.org/10.1109/ACCESS.2018.2864999

    Article  Google Scholar 

  131. Chowdhury, S.R.: A three-phase overlapping winding based wireless charging system for transportation applications. (2021)

  132. Bosshard, R.; Kolar, J.W.; Mühlethaler, J.; Stevanović, I.; Wunsch, B.; Canales, F.: Modeling and η - α-pareto optimization of inductive power transfer coils for electric vehicles. IEEE J. Emerg. Sel. Top Power Electron. 3(1), 50–64 (2015). https://doi.org/10.1109/JESTPE.2014.2311302

    Article  Google Scholar 

  133. Desmoort, A., de Grève, Z. and Deblecker, O.: Multiobjective optimal design of wireless power transfer devices using a Genetic Algorithm and accurate analytical formulae. (2016). doi: https://doi.org/10.1109/IECON.2016.7793123

  134. Hariri, A.; Elsayed, A.; Mohammed, O.A.: An integrated characterization model and multiobjective optimization for the design of an EV charger’s circular wireless power transfer pads. IEEE Trans. Magn. 53(6), 1–4 (2017). https://doi.org/10.1109/TMAG.2017.2661722

    Article  Google Scholar 

  135. Lu, M.; Ngo, K.D.T.: A fast method to optimize efficiency and stray magnetic field for inductive-power-transfer coils using lumped-loops model. IEEE Trans. Power Electron. (2018). https://doi.org/10.1109/TPEL.2017.2710141

    Article  Google Scholar 

  136. Bosshard, R.; Iruretagoyena, U.; Kolar, J.W.: Comprehensive evaluation of rectangular and double-D coil geometry for 50 kW/85 kHz IPT system. IEEE J. Emerg. Sel. Top Power Electron. 4(4), 1406–1415 (2016). https://doi.org/10.1109/JESTPE.2016.2600162

    Article  Google Scholar 

  137. Song, K., et al.: Design of DD coil with high misalignment tolerance and low EMF emissions for wireless electric vehicle charging systems. IEEE Trans. Power Electron. (2020). https://doi.org/10.1109/TPEL.2020.2971967

    Article  Google Scholar 

  138. Bandyopadhyay, S.; Venugopal, P.; Dong, J.; Bauer, P.: Comparison of magnetic couplers for ipt-based ev charging using multi-objective optimization. IEEE Trans. Veh. Technol. 68(6), 5416–5429 (2019). https://doi.org/10.1109/TVT.2019.2909566

    Article  Google Scholar 

  139. Kraus, D. and Herzog, H.G.: Magnetic design of a Q-coil for a 10 kW DDQ system for inductive power transfer. (2019). doi: https://doi.org/10.1109/WoW45936.2019.9030643

  140. Yilmaz, T.; Hasan, N.; Zane, R.; Pantic, Z.: Multi-objective optimization of circular magnetic couplers for wireless power transfer applications. IEEE Trans. Magn. 53(8), 1–12 (2017). https://doi.org/10.1109/TMAG.2017.2692218

    Article  Google Scholar 

  141. Covic, G.A., Kissin, M.L.G., Kacprzak, D., Clausen, N. and Hao, H.: A bipolar primary pad topology for EV stationary charging and highway power by inductive coupling. (2011). doi: https://doi.org/10.1109/ECCE.2011.6064008

  142. Kim, S.; Covic, G.A.; Boys, J.T.: Tripolar pad for inductive power transfer systems for EV charging. IEEE Trans. Power Electron. (2017). https://doi.org/10.1109/TPEL.2016.2606893

    Article  Google Scholar 

  143. Nguyen, V.T.; Vu, V.B.; Gohil, G.; Fahimi, B.: Coil-to-coil efficiency optimization of double-sided LCC topology for electric vehicle inductive chargers. IEEE Trans. Ind. Electron. (2022). https://doi.org/10.1109/TIE.2021.3118343

    Article  Google Scholar 

  144. Li, Z.; Li, J.; Li, S.; Yu, Y.; Yi, J.: Design and optimization of asymmetric and reverse series coil structure for obtaining quasi-constant mutual inductance in dynamic wireless charging system for electric vehicles. IEEE Trans. Veh. Technol. (2022). https://doi.org/10.1109/TVT.2021.3138072

    Article  Google Scholar 

  145. Shi, W., et al.: Design of a highly efficient 20-kW inductive power transfer system with improved misalignment performance. IEEE Trans. Transp. Electrific. (2022). https://doi.org/10.1109/TTE.2021.3133759

    Article  Google Scholar 

  146. Nie, S.; Pathmanathan, M.; Yakop, N.; Luo, Z.; Lehn, P.W.: Field orientation based three-coil decoupled wireless transmitter for electric vehicle charging with large lateral receiver misalignment tolerance. IET Power Electron. (2021). https://doi.org/10.1049/pel2.12077

    Article  Google Scholar 

  147. Zhang, W.; White, J.C.; Abraham, A.M.; Mi, C.C.: Loosely coupled transformer structure and interoperability study for EV wireless charging systems. IEEE Trans. Power Electron. (2015). https://doi.org/10.1109/TPEL.2015.2433678

    Article  Google Scholar 

  148. Mohammad, M.; Choi, S.; Elbuluk, M.E.: Loss minimization design of ferrite core in a DD-coil-based high-power wireless charging system for electrical vehicle application. IEEE Trans. Transp. Electrific. (2019). https://doi.org/10.1109/TTE.2019.2940878

    Article  Google Scholar 

  149. Mohammad, M.; Wodajo, E.T.; Choi, S.; Elbuluk, M.E.: Modeling and design of passive shield to limit EMF emission and to minimize shield loss in unipolar wireless charging system for EV. IEEE Trans. Power Electron. (2019). https://doi.org/10.1109/TPEL.2019.2903788

    Article  Google Scholar 

  150. Jafari, H.; Olowu, T.O.; Mahmoudi, M.; Sarwat, A.: Optimal design of IPT bipolar power pad for roadway-powered EV charging systems. IEEE Can. J. Electr. Comput. Eng. (2021). https://doi.org/10.1109/icjece.2021.3075639

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Lakshmi Narayana Komanapalli.

Ethics declarations

Conflict of interest

The authors do not have any known conflicting financial interests or personal ties that may seem to have influenced the work disclosed in this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakibanda, V., Komanapalli, V.L.N. Optimization in Magnetic Coupler Design for Inductively Coupled Wireless Charging of Electric Vehicle: A Review. Arab J Sci Eng 48, 14257–14294 (2023). https://doi.org/10.1007/s13369-023-08119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08119-7

Keywords

Navigation