Skip to main content
Log in

Facile Synthesis of CdO–ZnO Nanocomposites for Photocatalytic Application in Visible Light

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This research work reveals the CdO–ZnO nanocomposites as photocatalysts for the degradation of MB (Methylene blue), RhB (Rhodamine B), and MO (Methyl orange) dyes. The composites have been prepared through a hydrothermal route with different cadmium oxide contents (0–30%). The nanocomposites were characterized and inspected via X-ray diffraction (XRD), UV–visible spectroscopy, photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The XRD illustrates the occurrence of highly crystalline hexagonal wurtzite and cubic phase for ZnO and CdO, respectively, and also demonstrates the crystallite size in the range of 15.14–22.01 nm. FESEM and TEM analysis was employed to confirm the morphology of nanocomposites. FTIR is accomplished to ensure the subsistence of diverse functional groups in the prepared material. The optical properties of a sample are characterized through UV–vis and PL spectroscopy and show the incidence of redshirt and decrease charge carriers recombination rate with increasing the weight percentage of CdO in a composite. The result found enhanced dye degrading efficiency with cadmium oxide contents in composites as compared to bare ZnO nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig.13
Fig.14

Similar content being viewed by others

References

  1. Fujishima, A.; Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)

    Google Scholar 

  2. Sun, Q.; Li, K.; Wu, S.; Han, B.; Sui, L.; Dong, L.: Remarkable improvement of TiO2 for dye photocatalytic degradation by a facile post-treatment. New J. Chem. 44(5), 1942–1952 (2020)

    Google Scholar 

  3. Singha, M.K.; Patra, A.: Highly efficient and Reusable ZnO microflower photocatalyst on stainless steel mesh under UV-Vis and natural sunlight. Opt. Mater. 107, 110000 (2020)

    Google Scholar 

  4. Rahman, A.; Aadil, M.; Zulfiqar, S.; Alsafari, I.A.; Shahid, M.; Agboola, P.O.; Abdel-Haliem, M.E.: Fabrication of binary metal substituted CdO with superior aptitude for dye degradation and antibacterial activity. Ceram. Int. 47(6), 8082–8093 (2021)

    Google Scholar 

  5. Karunakaran, C.; SakthiRaadha, S.; Gomathisankar, P.; Vinayagamoorthy, P.: Fe3O4/SnO2 nanocomposite: Hydrothermal and sonochemical synthesis, characterization, and visible-light photocatalytic and bactericidal activities. Powder Technol. 246, 635–642 (2013)

    Google Scholar 

  6. Odling, G.; Bhosale, R.; Ogale, S.; Robertson, N.: Sequential ionic layer adsorption reaction formation of LaVO 4–TiO 2 nanocomposites for photocatalytic water treatment. Mater. Adv. 1(2), 271–280 (2020)

    Google Scholar 

  7. Kaur, A.; Umar, A.; Anderson, W.A.; Kansal, S.K.: Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination. J. Photochem. Photobiol., A 360, 34–43 (2018)

    Google Scholar 

  8. Jana, T.K.; Pal, A.; Chatterjee, K.: Self assembled flower like CdS-ZnO nanocomposite and its photo catalytic activity. J. Alloy. Compd. 583, 510–515 (2014)

    Google Scholar 

  9. Kajbafvala, A.; Ghorbani, H.; Paravar, A.; Samberg, J.P.; Kajbafvala, E.; Sadrnezhaad, S.K.: Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices Microstruct. 51(4), 512–522 (2012)

    Google Scholar 

  10. Reddy, C.V.; Babu, B.; Shim, J.: Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite. J. Phys. Chem. Solids 112, 20–28 (2018)

    Google Scholar 

  11. Saravanan, R.; Khan, M.M.; Gupta, V.K.; Mosquera, E.; Gracia, F.; Narayanan, V.; Stephen, A.J.J.O.C.: ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J. Colloid Int. Sci. 452, 126–133 (2015)

    Google Scholar 

  12. Munawar, T.; Yasmeen, S.; Hussain, F.; Mahmood, K.; Hussain, A.; Asghar, M.; Iqbal, F.: Synthesis of novel heterostructured ZnO-CdO-CuO nanocomposite: characterization and enhanced sunlight driven photocatalytic activity. Mater. Chem. Phys. 249, 122983 (2020)

    Google Scholar 

  13. Kumar, P.S.; Selvakumar, M.; Babu, S.G.; Karuthapandian, S.; Chattopadhyay, S.: CdO nanospheres: facile synthesis and bandgap modification for the superior photocatalytic activity. Mater. Lett. 151, 45–48 (2015)

    Google Scholar 

  14. Abu-Dief, A.M.; Essawy, A.A.; Diab, A.K.; Mohamed, W.S.: Facile synthesis and characterization of novel Gd2O3–CdO binary mixed oxide nanocomposites of highly photocatalytic activity for wastewater remediation under solar illumination. J. Phys. Chem. Solids 148, 109666 (2021)

    Google Scholar 

  15. Bulakhe, R.N.; Lokhande, C.D.: Chemically deposited cubic structured CdO thin films: use in liquefied petroleum gas sensor. Sens. Actuators, B Chem. 200, 245–250 (2014)

    Google Scholar 

  16. Yakuphanoglu, F.: Nanocluster n-CdO thin film by sol–gel for solar cell applications. Appl. Surf. Sci. 257(5), 1413–1419 (2010)

    Google Scholar 

  17. Rakibuddin, M.; Ananthakrishnan, R.: Fabrication of graphene aerosol hybridized coordination polymer derived CdO/SnO2 heteronanostructure with improved visible light photocatalytic performance. Sol. Energy Mater. Sol. Cells 162, 62–71 (2017)

    Google Scholar 

  18. Upadhyay, G.K.; Rajput, J.K.; Pathak, T.K.; Swart, H.C.; Purohit, L.P.: Photoactive CdO: TiO2 nanocomposites for dyes degradation under visible light. Mater. Chem. Phys. 253, 123191 (2020)

    Google Scholar 

  19. Mohamed, R.M.; Zaki, Z.I.: Degradation of Imazapyr herbicide using visible light-active CdO–TiO2 heterojunction photocatalyst. J. Environ. Chem. Eng. 9(1), 104732 (2021)

    Google Scholar 

  20. Upadhyay, G.K.; Rajput, J.K.; Pathak, T.K.; Pal, P.K.; Purohit, L.P.: Tailoring and optimization of hybrid ZnO: TiO2: CdO nanomaterials for advance oxidation process under visible light. Appl. Surf. Sci. 509, 145326 (2020)

    Google Scholar 

  21. Ni, Y.H.; Wei, X.W.; Hong, J.M.; Ye, Y.: Hydrothermal preparation and optical properties of ZnO nanorods. Mater. Sci. Eng., B 121(1–2), 42–47 (2005)

    Google Scholar 

  22. Zhu, L.; Zeng, W.: Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators, A 267, 242–261 (2017)

    Google Scholar 

  23. Djurišić, A.B.; Ng, A.M.C.; Chen, X.Y.: ZnO nanostructures for optoelectronics: material properties and device applications. Prog. Quantum Electron. 34(4), 191–259 (2010)

    Google Scholar 

  24. Saad, A.M.; Abukhadra, M.R.; Ahmed, S.A.K.; Elzanaty, A.M.; Mady, A.H.; Betiha, M.A.; Rabie, A.M.: Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce–ZnO nano-flowers under visible light. J. Environ. Manag. 258, 110043 (2020)

    Google Scholar 

  25. Hu, H.; Lin, Y.; Hu, Y.H.: Synthesis, structures and applications of single component core-shell structured TiO2: a review. Chem. Eng. J. 375, 122029 (2019)

    Google Scholar 

  26. Ahmad, M.; Khan, M.Y.; Sadaf, S.; Iqbal, S.; Nawaz, F.; Iqbal, J.: Novel indigo-dye-doped graphene-supported Mn/WO3 nanocomposite as visible light photocatalyst for degradation of methylene blue dye. Mater. Res. Express 6(5), 055050 (2019)

    Google Scholar 

  27. Khan, M.Y.; Ahmad, M.; Sadaf, S.; Iqbal, S.; Nawaz, F.; Iqbal, J.: Visible light active indigo dye/graphene/WO3 nanocomposites with excellent photocatalytic activity. J. Market. Res. 8(3), 3261–3269 (2019)

    Google Scholar 

  28. Kashmeri, A.A.; Nawaz, F.; Yousaf, M.; Shameem, A.; Mahr, M.S.; Iqbal, J.; Javed, M.A.: Manganese incorporated eosin Y dye/graphene nanocomposite: an efficient visible light active photocatalyst. Russ. J. Phys. Chem. B 14, 552–558 (2020)

    Google Scholar 

  29. Kannan, K.; Radhika, D.; Nikolova, M.P.; Andal, V.; Sadasivuni, K.K.; Krishna, L.S.: Facile microwave-assisted synthesis of metal oxide CdO-CuO nanocomposite: Photocatalytic and antimicrobial enhancing properties. Optik 218, 165112 (2020)

    Google Scholar 

  30. Akyüz, D.: rGO-TiO2-CdO–ZnO-Ag photocatalyst for enhancing photocatalytic degradation of methylene blue. Opt. Mater. 116, 111090 (2021)

    Google Scholar 

  31. Ahmad, J.; Majid, K.: Enhanced visible light driven photocatalytic activity of CdO–graphene oxide heterostructures for the degradation of organic pollutants. New J. Chem. 42(5), 3246–3259 (2018)

    Google Scholar 

  32. Tahir, M.B.; Sagir, M.; Abas, N.: Enhanced photocatalytic performance of CdO-WO3 composite for hydrogen production. Int. J. Hydrogen Energy 44(45), 24690–24697 (2019)

    Google Scholar 

  33. Karunakaran, C.; Vijayabalan, A.; Vinayagamoorthy, P.: CdO-implanted hexagonal ZnO nanoplatelets: red-shifted emission and enhanced charge carrier-resistance and bacteria-inactivation. Appl. Phys. A 125(1), 1–6 (2019)

    Google Scholar 

  34. Rahman, M.M.; Khan, S.B.; Marwani, H.M.; Asiri, A.M.; Alamry, K.A.; Rub, M.A.; Azum, N.: Facile synthesis of doped ZnO-CdO nanoblocks as solid-phase adsorbent and efficient solar photo-catalyst applications. J. Ind. Eng. Chem. 20(4), 2278–2286 (2014)

    Google Scholar 

  35. Usharani, K.; Balu, A.R.: Structural, optical, and electrical properties of Zn-doped CdO thin films fabricated by a simplified spray pyrolysis technique. Acta Metallurgica Sinica (English Letters) 28(1), 64–71 (2015)

    Google Scholar 

  36. Zeid, E.F.A.; Ibrahem, I.A.; Ali, A.M.; Mohamed, W.A.: The effect of CdO content on the crystal structure, surface morphology, optical properties and photocatalytic efficiency of p-NiO/n-CdO nanocomposite. Results in Phys. 12, 562–570 (2019)

    Google Scholar 

  37. Sadaiyandi, K.; Kennedy, A.; Sagadevan, S.; Chowdhury, Z.Z.; Johan, M.; Bin, R.; Thamiz Selvi, R.: Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett 13(1), 1–13 (2018)

    Google Scholar 

  38. Sirohi, K.; Kumar, S.; Singh, V.; Vohra, A.: Synthesis and characterization of CdO–SnO2 nanocomposites prepared by hydrothermal method. Acta Metallurgica Sinica (English Letters) 31(3), 254–262 (2018)

    Google Scholar 

  39. Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.: Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue. Physica B 534, 56–62 (2018)

    Google Scholar 

  40. Singh, T.; Pandya, D.K.; Singh, R.: Synthesis of cadmium oxide doped ZnO nanostructures using electrochemical deposition. J. Alloy. Compd. 509(16), 5095–5098 (2011)

    Google Scholar 

  41. Djurišić, A.B.; Leung, Y.H.: Optical properties of ZnO nanostructures. Small 2(8–9), 944–961 (2006)

    Google Scholar 

  42. Musa, I.; Qamhieh, N.; Mahmoud, S.T.: Synthesis and length dependent photoluminescence property of zinc oxide nanorods. Results in physics 7, 3552–3556 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Engineering Research Board, Department of Science & Technology (DST), Govt. of India (Grant No. SB/EMEQ/190/2013), and the authors are thankful to them for providing financial assistance for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Sirohi.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirohi, K., Kumar, S., Singh, V. et al. Facile Synthesis of CdO–ZnO Nanocomposites for Photocatalytic Application in Visible Light. Arab J Sci Eng 49, 273–284 (2024). https://doi.org/10.1007/s13369-023-08072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08072-5

Keywords

Navigation