Skip to main content
Log in

Acid Treatment to Improve Total Light Olefins Selectivity of HZSM-5 Catalyst in Methanol to Olefins (MTO) Reaction

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the effects of different types of acid treatments (H3PO4, H2SO4, and HCl) on the physicochemical properties and catalytic activity of the microporous HZSM-5 catalyst were investigated in methanol to olefins (MTO) reaction. The synthesized catalysts were characterized by XRD, N2 adsorption/desorption, ICP-MS, SEM, TEM, and pyridine-adsorbed DRIFT techniques. The characterization analyses indicated that each acid treatment led to the removal of differently positioned Al atoms in the HZSM-5 framework. Consequently, these acid treatments tuned the physicochemical properties, enhanced mesoporosity, and adjusted the Lewis Acid Site/Brønsted Acid Site (LAS/BAS) ratio of the catalysts by increasing the Si/Al ratio based on the removed Al atoms positioned in the HZSM-5 structure. In the activity tests of the catalysts, acid-treated HZSM-5 catalysts showed more stable and higher average methanol conversion, ethylene, and propylene selectivity compared to the parent catalyst. Among the acid-treated catalysts, the highest total light olefin selectivity (53%) was obtained over phosphoric acid-treated HZSM-5 due to the formation of silicoaluminophosphate-like structures, the generation of mesopores, and the adjusted acidity caused by the altered Si/Al ratio. TOS results showed that the amount of total light olefin selectivity obtained from the parent HZSM-5 was increased by 33% after phosphoric acid treatment. Acid treatments decreased coke deposition over the catalyst from 9.5 to 1.3%. Thus, it is noteworthy to say that the use of phosphoric acid-treated HZSM-5 in the MTO reaction is recommendable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu, D.; Choi, W.C.; Kang, N.Y.; Lee, Y.J.; Park, H.S.; Shin, C.H.; Park, Y.K.: Inter-conversion of light olefins on ZSM-5 in catalytic naphtha cracking condition. Catal. Today (2014). https://doi.org/10.1016/j.cattod.2013.09.060

    Article  Google Scholar 

  2. Al-Shafei, E.N.; Albahar, M.Z.; Aljishi, M.F.; Aljishi, A.N.; Nasser, G.A.; Sanhoob, M.A.; Alnasir, A.S.; AlAsseel, A.: Effect of zeolite structure and addition of steam on naphtha catalytic cracking to improve olefin production. Fuel (2022). https://doi.org/10.1016/j.fuel.2022.124089

    Article  Google Scholar 

  3. Chen, Z.; Li, Z.; Zhang, Y.; Chevella, D.; Li, G.; Chen, Y.; Guo, X.; Liu, J.; Yu, J.: A green route for the synthesis of nano-sized hierarchical ZSM-5 zeolite with excellent DTO catalytic performance. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124322

    Article  Google Scholar 

  4. Al-Dughaither, A.S.; de Lasa, H.: Neat dimethyl ether conversion to olefins (DTO) over HZSM-5: effect of SiO2/Al2O3 on porosity, surface chemistry, and reactivity. Fuel (2014). https://doi.org/10.1016/j.fuel.2014.07.026

    Article  Google Scholar 

  5. Fatih, Y.; Burgun, U.; Sarioglan, A.; Atakül, H.: Effect of sodium incorporation into Fe-Zn catalyst for Fischer-Tropsch synthesis to light olefins. Mol. Catal. (2023). https://doi.org/10.1016/j.mcat.2022.112866

    Article  Google Scholar 

  6. Wang, D.; Gu, Y.; Chen, Q.; Tang, Z.: Direct conversion of syngas to alpha olefins via Fischer-Tropsch synthesis: process development and comparative techno-economic-environmental analysis. Energy (2023). https://doi.org/10.1016/j.energy.2022.125991

    Article  Google Scholar 

  7. Wang, C.; Zhang, Q.; Zhu, Y.; Zhang, D.; Chen, J.; Chiang, F.K.: p-Xylene selectivity enhancement in methanol toluene alkylation by separation of catalysis function and shape-selective function. Mol. Catal. (2017). https://doi.org/10.1016/j.mcat.2016.12.007

    Article  Google Scholar 

  8. Rostami, R.B.; Lemraski, A.S.; Ghavipour, M.; Behbahani, R.M.; Shahraki, B.H.; Hamule, T.: Kinetic modelling of methanol conversion to light olefins process over silicoaluminophosphate (SAPO-34) catalyst. Chem. Eng. Res. Des. (2016). https://doi.org/10.1016/j.cherd.2015.10.019

    Article  Google Scholar 

  9. Tian, P.; Wei, Y.; Ye, M.; Liu, Z.: Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. (2015). https://doi.org/10.1021/acscatal.5b00007

    Article  Google Scholar 

  10. Yang, M.; Fan, D.; Wei, Y.; Tian, P.; Liu, Z.: Recent progress in methanol-to-olefins (MTO) catalysts. Adv. Mater. (2019). https://doi.org/10.1002/adma.201902181

    Article  Google Scholar 

  11. Zhou, Y.; Shen, X.; Li, J.: Crystallization and MTO performance of SAPO-34 zeolite under the influence of hydroxyl radicals. Inorg. Chem. Commun. (2019). https://doi.org/10.1016/j.inoche.2019.107462

    Article  Google Scholar 

  12. Sun, Q.; Xie, Z.; Yu, J.: The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. Natl. Sci. Rev. (2018). https://doi.org/10.1093/nsr/nwx103

    Article  Google Scholar 

  13. Zhang, H.; Ning, Z.; Shang, J.; Liu, H.; Han, S.; Qu, W.; Jiang, Y.; Guo, Y.: A durable and highly selective PbO/HZSM-5 catalyst for methanol to propylene (MTP) conversion. Microporous Mesoporous Mater. (2017). https://doi.org/10.1016/j.micromeso.2017.04.031

    Article  Google Scholar 

  14. He, S.; Wang, S.; Fan, S.; Luo, L.; Yuan, K.; Qin, Z.; Dong, M.; Wang, J.; Fan, W.: Improvement of the catalytic performance of ITQ-13 zeolite in methanol to olefins via Ce modification. Catal. Today (2023). https://doi.org/10.1016/j.cattod.2022.05.049

    Article  Google Scholar 

  15. Zhang, S.; Zhang, B.; Gao, Z.; Han, Y.: Methanol to olefin over Ca-modified HZSM-5 zeolites. Ind. Eng. Chem. Res. (2010). https://doi.org/10.1021/ie901446m

    Article  Google Scholar 

  16. Khezri, H.; Izadbakhsh, A.; Izadpanah, A.A.: Promotion of the performance of La, Ce and Ca impregnated HZSM-5 nanoparticles in the MTO reaction. Fuel Process. Technol. (2020). https://doi.org/10.1016/j.fuproc.2019.106253

    Article  Google Scholar 

  17. Ahmadpour, J.; Taghizadeh, M.: Selective production of propylene from methanol over high-silica mesoporous ZSM-5 zeolites treated with NaOH and NaOH/tetrapropylammonium hydroxide. C. R. Chim. (2015). https://doi.org/10.1016/j.crci.2015.05.002

    Article  Google Scholar 

  18. Wei, Y.; de Jongh, P.E.; Bonati, M.L.; Law, D.J.; Sunley, G.J.; de Jong, K.P.: Enhanced catalytic performance of zeolite ZSM-5 for conversion of methanol to dimethyl ether by combining alkaline treatment and partial activation. Appl. Catal. A (2015). https://doi.org/10.1016/j.apcata.2014.12.027

    Article  Google Scholar 

  19. Ren, S.; Liu, G.; Wu, X.; Chen, X.; Wu, M.; Zeng, G.; Liu, Z.; Sun, Y.: Enhanced MTO performance over acid treated hierarchical SAPO-34. Chin. J. Catal. (2017). https://doi.org/10.1016/S1872-2067(16)62557-3

    Article  Google Scholar 

  20. Louwen, J.N.; Van Eijck, L.; Vogt, C.; Vogt, E.T.: Understanding the activation of ZSM-5 by phosphorus: localizing phosphate groups in the pores of phosphate-stabilized ZSM-5. Chem. Mater. (2020). https://doi.org/10.1021/acs.chemmater.0c03411

    Article  Google Scholar 

  21. Danisi, R.M.; Schmidt, J.E.; Paioni, A.L.; Houben, K.; Poplawsky, J.D.; Baldus, M.; Weckhuysen, B.M.; Vogt, E.T.: Revealing long-and short-range structural modifications within phosphorus-treated HZSM-5 zeolites by atom probe tomography, nuclear magnetic resonance and powder X-ray diffraction. Phys. Chem. Chem. Phys. (2018). https://doi.org/10.1039/C8CP03828G

    Article  Google Scholar 

  22. Meng, X.; Lian, Z.; Wang, X.; Shi, L.; Liu, N.: Effect of dealumination of HZSM-5 by acid treatment on catalytic properties in non-hydrocracking of diesel. Fuel (2020). https://doi.org/10.1016/j.fuel.2020.117426

    Article  Google Scholar 

  23. Rostamizadeh, M.; Yaripour, F.: Dealumination of high silica H-ZSM-5 as long-lived nanocatalyst for methanol to olefin conversion. J. Taiwan Inst. Chem. Eng. (2017). https://doi.org/10.1016/j.jtice.2016.12.003

    Article  Google Scholar 

  24. Lopez-Orozco, S.; Inayat, A.; Schwab, A.; Selvam, T.; Schwieger, W.: Zeolitic materials with hierarchical porous structures. Adv. Mater. (2011). https://doi.org/10.1002/adma.201100462

    Article  Google Scholar 

  25. Valtchev, V.; Majano, G.; Mintova, S.; Perez-Ramirez, J.: Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev. (2013). https://doi.org/10.1039/C2CS35196J

    Article  Google Scholar 

  26. Schwieger, W.; Machoke, A.G.; Weissenberger, T.; Inayat, A.; Selvam, T.; Klumpp, M.; Inayat, A.: Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. (2016). https://doi.org/10.1039/C5CS00599J

    Article  Google Scholar 

  27. Fang, Y.; Yang, F.; He, X.; Zhu, X.: Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization. Front. Chem. Sci. Eng. (2019). https://doi.org/10.1007/s11705-018-1778-8

    Article  Google Scholar 

  28. Tanaka, S.; Fukui, R.; Kosaka, A.; Nishiyama, N.: Development of hierarchical and phosphorous-modified HZSM-5 zeolites by sequential alkaline/acid treatments and their catalytic performances for methanol-to-olefins. Mater. Res. Bull. (2020). https://doi.org/10.1016/j.materresbull.2020.110958

    Article  Google Scholar 

  29. Fan, Y.; Bao, X.; Lin, X.; Shi, G.; Liu, H.: Acidity adjustment of HZSM-5 zeolites by dealumination and realumination with steaming and citric acid treatments. J. Phys. Chem. B (2006). https://doi.org/10.1021/jp0607566

    Article  Google Scholar 

  30. Gorzin, F.; Darian, J.T.; Yaripour, F.; Mousavi, S.M.: Preparation of hierarchical HZSM-5 zeolites with combined desilication with NaAlO 2/tetrapropylammonium hydroxide and acid modification for converting methanol to propylene. RSC Adv. (2018). https://doi.org/10.1039/C8RA08624A

    Article  Google Scholar 

  31. Li, J.; Liu, M.; Li, S.; Guo, X.; Song, C.: Influence of diffusion and acid properties on methane and propane selectivity in methanol-to-olefins reaction. Ind. Eng. Chem. Res. (2019). https://doi.org/10.1021/acs.iecr.8b03969

    Article  Google Scholar 

  32. Balbay, A.; Selvitepe, N.; Saka, C.: Fe doped-CoB catalysts with phosphoric acid-activated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis. Int. J. Hydrogen Energy (2021). https://doi.org/10.1016/j.ijhydene.2020.09.181

    Article  Google Scholar 

  33. Yang, L.; Wang, K.; Yang, J.; Zhang, W.: Role of hydrochloric acid treated HZSM-5 zeolite in Sm2Ti2O7/nHZSM-5 composite for photocatalytic degradation of ofloxacin. J. Market. Res. (2020). https://doi.org/10.1016/j.jmrt.2020.07.080

    Article  Google Scholar 

  34. Yu, Z.; Meng, X.; Liu, N.; Shi, L.: A novel disposal approach of deactivated resin catalyst for methyl tert-butyl ether synthesis: Preparation of low-cost activated carbons with remarkable performance on dibenzothiophene adsorption. Fuel (2017). https://doi.org/10.1016/j.fuel.2017.05.053

    Article  Google Scholar 

  35. Gao, Y.; Yue, Q.; Gao, B.; Sun, Y.; Wang, W.; Li, Q.; Wang, Y.: Comparisons of porous, surface chemistry and adsorption properties of carbon derived from Enteromorpha prolifera activated by H4P2O7 and KOH. Chem. Eng. J. (2013). https://doi.org/10.1016/j.cej.2013.08.011

    Article  Google Scholar 

  36. Feng, R.; Yan, X.; Hu, X.; Zhang, Y.; Wu, J.; Yan, Z.: Phosphorus-modified b-axis oriented hierarchical ZSM-5 zeolites for enhancing catalytic performance in a methanol to propylene reaction. Appl. Catal. A (2020). https://doi.org/10.1016/j.apcata.2020.117464

    Article  Google Scholar 

  37. Valecillos, J.; Epelde, E.; Albo, J.; Aguayo, A.T.; Bilbao, J.; Castaño, P.: Slowing down the deactivation of H-ZSM-5 zeolite catalyst in the methanol-to-olefin (MTO) reaction by P or Zn modifications. Catal. Today (2020). https://doi.org/10.1016/j.cattod.2019.07.059

    Article  Google Scholar 

  38. Tian, H.; Liu, S.; Han, Y.; Yang, K.; Xu, W.: Acid treatment to adjust zeolite hydrophobicity for olefin hydration reaction. J. Porous Mater. (2022). https://doi.org/10.1007/s10934-022-01199-0

    Article  Google Scholar 

  39. Akansu, H.; Arbag, H.; Tasdemir, H.M.; Yasyerli, S.; Yasyerli, N.; Dogu, G.: Nickel-based alumina supported catalysts for dry reforming of biogas in the absence and the presence of H2S: effect of manganese incorporation. Catal. Today (2022). https://doi.org/10.1016/j.cattod.2021.12.012

    Article  Google Scholar 

  40. Peng, Q.; Wang, G.; Wang, Z.; Jiang, R.; Wang, D.; Chen, J.; Huang, J.: Tuning hydrocarbon pool intermediates by the acidity of SAPO-34 catalysts for improving methanol-to-olefins reaction. ACS Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.8b04210

    Article  Google Scholar 

  41. Lian, Z.; Yang, C.; Shi, L.; Meng, X.; Liu, N.; Yang, Y.; Wang, X.: Non-hydrocracking of diesel over hierarchical hzsm-5 zeolite to produce gasoline. Appl. Organomet. Chem. (2018). https://doi.org/10.1002/aoc.4587

    Article  Google Scholar 

  42. Selvitepe, N.; Balbay, A.; Saka, C.: Optimisation of sepiolite clay with phosphoric acid treatment as support material for CoB catalyst and application to produce hydrogen from the NaBH4 hydrolysis. Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.04.254

    Article  Google Scholar 

  43. Liu, C.; Li, G.; Hensen, E.J.; Pidko, E.A.: Nature and catalytic role of extraframework aluminum in faujasite zeolite: a theoretical perspective. ACS Catal. (2015). https://doi.org/10.1021/acscatal.5b02268

    Article  Google Scholar 

  44. Silaghi, M.C.; Chizallet, C.; Sauer, J.; Raybaud, P.: Dealumination mechanisms of zeolites and extra-framework aluminum confinement. J. Catal. (2016). https://doi.org/10.1016/j.jcat.2016.04.021

    Article  Google Scholar 

  45. Li, M.; Mo, J.; Gu, X.; Zhou, Y.; Fan, M.; Shen, S.; Chen, Y.: Acid modified carrier on catalytic oxidation of dichloromethane over CeO2/HZSM-5 catalysts. J. Rare Earths (2022). https://doi.org/10.1016/j.jre.2021.08.018

    Article  Google Scholar 

  46. Perez-Uriarte, P.; Gamero, M.; Ateka, A.; Diaz, M.; Aguayo, A.T.; Bilbao, J.: Effect of the acidity of HZSM-5 zeolite and the binder in the DME transformation to olefins. Ind. Eng. Chem. Res. (2016). https://doi.org/10.1021/acs.iecr.5b04477

    Article  Google Scholar 

  47. Shirazi, L.; Jamshidi, E.; Ghasemi, M.R.: The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. (2008). https://doi.org/10.1002/crat.200800149

    Article  Google Scholar 

  48. Sanhoob, M.A.; Khan, A.; Ummer, A.C.: ZSM-5 catalysts for MTO: effect and optimization of the tetrapropylammonium hydroxide concentration on synthesis and performance. ACS Omega (2022). https://doi.org/10.1021/acsomega.2c01539

    Article  Google Scholar 

  49. Chen, C.; Zhang, Q.; Meng, Z.; Li, C.; Shan, H.: Effect of magnesium modification over H-ZSM-5 in methanol to propylene reaction. Appl. Petrochem. Res. (2015). https://doi.org/10.1007/s13203-015-0129-7

    Article  Google Scholar 

  50. Gayubo, A.G.; Benito, P.L.; Aguayo, A.T.; Olazar, M.; Bilbao, J.: Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. (1996). https://doi.org/10.1002/(SICI)1097-4660(199602)65:2%3c186::AID-JCTB401%3e3.0.CO;2-J

    Article  Google Scholar 

  51. Grau-Crespo, R.; Peralta, A.G.; Ruiz-Salvador, A.R.; Gómez, A.; López-Cordero, R.: A computer simulation study of distribution, structure and acid strength of active sites in H-ZSM-5 catalyst. Phys. Chem. Chem. Phys. (2000). https://doi.org/10.1039/B006490O

    Article  Google Scholar 

  52. Chu, Y.; Yi, X.; Li, C.; Sun, X.; Zheng, A.: Brønsted/Lewis acid sites synergistically promote the initial C–C bond formation in the MTO reaction. Chem. Sci. (2018). https://doi.org/10.1039/C8SC02302F

    Article  Google Scholar 

  53. Losch, P.; Laugel, G.; Martinez-Espin, J.S.; Chavan, S.; Olsbye, U.; Louis, B.: Phosphorous modified ZSM-5 zeolites: impact on methanol conversion into olefins. Top. Catal. (2015). https://doi.org/10.1007/s11244-015-0449-y

    Article  Google Scholar 

  54. Tsunoji, N.; Osuga, R.; Yasumoto, M.; Yokoi, T.: Controlling hydrocarbon oligomerization in phosphorus-modified CHA zeolite for a long-lived methanol-to-olefin catalyst. Appl. Catal. A (2021). https://doi.org/10.1016/j.apcata.2021.118176

    Article  Google Scholar 

  55. Dyballa, M.; Becker, P.; Trefz, D.; Klemm, E.; Fischer, A.; Jakob, H.; Hunger, M.: Parameters influencing the selectivity to propene in the MTO conversion on 10-ring zeolites: directly synthesized zeolites ZSM-5, ZSM-11, and ZSM-22. Appl. Catal. A (2016). https://doi.org/10.1016/j.apcata.2015.11.017

    Article  Google Scholar 

  56. Park, G.; Kang, J.; Park, S.J.; Kim, Y.T.; Kwak, G.; Kim, S.: Effect of acid modification of ZSM-5 catalyst on performance and coke formation for methanol-to-hydrocarbon reaction. Mol. Catal. (2022). https://doi.org/10.1016/j.mcat.2022.112702

    Article  Google Scholar 

  57. Alshafei, F.H.; Park, Y.; Zones, S.I.; Davis, M.E.: Methanol-to-olefins catalysis on ERI-type molecular sieves: towards enhancing ethylene selectivity. J. Catal. (2021). https://doi.org/10.1016/j.jcat.2021.10.025

    Article  Google Scholar 

  58. Rui, P.; Wang, B.; Chen, F.; Xiang, Y.; Yang, J.; Guo, T.; Wu, Z.; Liao, W.; Shu, X.: The hydrothermal synthesis of hierarchical SAPO-34 with improved MTO performance. New J. Chem. (2021). https://doi.org/10.1039/D1NJ01066B

    Article  Google Scholar 

  59. Kaarsholm, M.; Joensen, F.; Nerlov, J.; Cenni, R.; Chaouki, J.; Patience, G.S.: Phosphorous modified ZSM-5: deactivation and product distribution for MTO. Chem. Eng. Sci. (2007). https://doi.org/10.1016/j.ces.2006.12.076

    Article  Google Scholar 

  60. Yaripour, F.; Shariatinia, Z.; Sahebdelfar, S.; Irandoukht, A.: Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction. Microporous Mesoporous Mater. (2015). https://doi.org/10.1016/j.micromeso.2014.10.024

    Article  Google Scholar 

  61. Hambali, H.U.; Jalil, A.A.; Siang, T.J.; Abdulrasheed, A.A.; Fatah, N.A.A.; Hussain, I.; Azami, M.S.: Effect of ZSM-5 acidity in enhancement of methanol-to-olefins process. J. Energy Saf. Technol. (JEST) (2019). https://doi.org/10.11113/jest.v2n1.37

    Article  Google Scholar 

  62. Wu, L.; Magusin, P.C.; Degirmenci, V.; Li, M.; Almutairi, S.M.; Zhu, X.; Mezari, B.; Hensen, E.J.: Acidic properties of nanolayered ZSM-5 zeolites. Microporous Mesoporous Mater. (2014). https://doi.org/10.1016/j.micromeso.2013.08.042

    Article  Google Scholar 

  63. Erdogan, B.; Arbag, H.; Yasyerli, N.: SBA-15 supported mesoporous Ni and Co catalysts with high coke resistance for dry reforming of methane. Int. J. Hydrogen Energy (2018). https://doi.org/10.1016/j.ijhydene.2017.11.127

    Article  Google Scholar 

  64. Liu, J.; Zhang, C.; Shen, Z.; Hua, W.; Tang, Y.; Shen, W.; Yue, Y.; Xu, H.: Methanol to propylene: effect of phosphorus on a high silica HZSM-5 catalyst. Catal. Commun. (2009). https://doi.org/10.1016/j.catcom.2009.04.004

    Article  Google Scholar 

Download references

Acknowledgements

The Middle East Technical University Central Laboratory is gratefully acknowledged. Thanks are due for the contributions of Prof. Dr. Nuray Oktar from Gazi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Arbag.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests regarding the publication of this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degirmencioglu, P., Arbag, H. Acid Treatment to Improve Total Light Olefins Selectivity of HZSM-5 Catalyst in Methanol to Olefins (MTO) Reaction. Arab J Sci Eng 48, 16123–16136 (2023). https://doi.org/10.1007/s13369-023-08067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08067-2

Keywords

Navigation