Skip to main content
Log in

Phosphorous Modified ZSM-5 Zeolites: Impact on Methanol Conversion into Olefins

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A promising methanol-to-propylene catalyst was designed both at the molecular scale, exhibiting low Brønsted acid site density, and at the microscopic level providing large crystals (25 µm) with few defects. The potential of giant ZSM-5 zeolites synthesized in fluoride medium in the conversion of methanol into propylene led us to investigate the replacement of harmful hydrofluoric acid by non-toxic H3PO4. P-ZSM-5 zeolites were synthesized and thoroughly characterized by XRD, SEM, FT-IR, TPD propylamine, H/D isotope exchange and XRF analyses. The catalytic performance of these acid catalysts was evaluated in the methanol-to-olefins reaction at 673 K. The presence of phosphorous in the zeolite after calcination was ascertained and induced high ethylene selectivity (up to 33 %) and improved catalyst stability with respect to fluoride-mediated zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chang CD (1983) Catal Rev Sci Eng 25:1–118

    Article  CAS  Google Scholar 

  2. Kvisle S, Fuglerud T, Kolboe S, Olsbye U, Lillerud KP, Vora BV (2008) Methanol-to-hydrocarbons. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim, pp 2950–2965

    Google Scholar 

  3. Keil FJ (1999) Microporous Mesoporous Mater 29:49–66

    Article  CAS  Google Scholar 

  4. Stöcker M (1999) Microporous Mesoporous Mater 29:3–48

    Article  Google Scholar 

  5. Koempel H, Liebner W, Ag L, Main D-F (2007) Stud Surf Sci Catal 167:261–267

    Article  Google Scholar 

  6. Chen JQ, Bozzano A, Glover B et al (2005) Catal Today 106:103–107

    Article  CAS  Google Scholar 

  7. Olsbye U, Svelle S, Bjørgen M et al (2012) Angew Chem Int Ed 51:5810–5831

    Article  CAS  Google Scholar 

  8. Gayubo AG, Aguayo AT, Olazar M et al (2003) Chem Eng Sci 58:5239–5249

    Article  CAS  Google Scholar 

  9. Haw JF, Song W, Marcus DM, Nicholas JB (2003) Acc Chem Res 36:317–326

    Article  CAS  Google Scholar 

  10. Štich I, Gale JD, Terakura K, Payne MC (1999) J Am Chem Soc 121:3292–3302

    Article  Google Scholar 

  11. Zaidi HA, Pant KK (2004) Catal Today 96:155–160

    Article  CAS  Google Scholar 

  12. Bjørgen M, Olsbye U, Kolboe S (2003) J Catal 215:30–44

    Article  Google Scholar 

  13. Olah GA, Goeppert A, Prakash GKS (2009) Beyond oil and gas: the methanol economy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  14. Ivanova S, Louis B, Madani B, et al. (2007) J Phys Chem C 111:4368–4374.4

  15. Bleken FL, Chavan S, Olsbye U et al (2012) Appl Catal A 447–448:178–185

    Article  Google Scholar 

  16. Liu J, Zhang C, Shen Z et al (2009) Catal Commun 10:1506–1509

    Article  CAS  Google Scholar 

  17. Reschetilowski W, Meier B, Hunger M, Unger B, Wendlandt KP (1991) Angew Chem Int Ed 30:686–687

    Article  Google Scholar 

  18. van der Bij HE, Weckhuysen BM (2014) Phys Chem Chem Phys 16:9892–9903

    Article  Google Scholar 

  19. Lercher JA, Rumplmayr G (1986) Appl Catal 25:215–222

    Article  CAS  Google Scholar 

  20. Jentys A, Rumplmayr G, Lercher JA (1989) Appl Catal 53:299–311

    Article  CAS  Google Scholar 

  21. Arichi J, Louis B (2008) Cryst Growth Des 8:3999–4005

    Article  CAS  Google Scholar 

  22. Louis B, Vicente A, Fernandez C et al (2011) J Phys Chem C 115:18603–18610

    Article  CAS  Google Scholar 

  23. Gorte RJ (1999) Catal Lett 62:1–13

    Article  CAS  Google Scholar 

  24. Pereira C, Gorte RJ (1992) Appl Catal A 90:145–157

    Article  CAS  Google Scholar 

  25. van der Bij HE, Aramburo LR, Arstad B et al (2014) ChemPhysChem 15:283–292

    Article  Google Scholar 

  26. Derewinski M, Sarv P, Sun X et al (2014) J Phys Chem C 118:6122–6131

    Article  CAS  Google Scholar 

  27. Chakarova K, Hadjiivanov K (2011) J Phys Chem C 115:4806–4817

    Article  CAS  Google Scholar 

  28. Dedecek J, Kaucky D, Wichterlova B (2001) Chem Commun 11:970–971

    Article  Google Scholar 

  29. Rice MJ, Chakraborty AK, Bell AT (1999) J Catal 186:222–227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

BL thanks the Agence Nationale de la Recherche (ANR) for supporting financially the ANR-10-JCJC-0703 project (SelfAsZeo). PL would like to thank the National Research Fund Luxembourg for his PhD Grant (5898454). The technical assistance from Thierry Romero and Jean-Daniel Sauer was highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Louis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losch, P., Laugel, G., Martinez-Espin, J.S. et al. Phosphorous Modified ZSM-5 Zeolites: Impact on Methanol Conversion into Olefins. Top Catal 58, 826–832 (2015). https://doi.org/10.1007/s11244-015-0449-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0449-y

Keywords

Navigation