Skip to main content
Log in

Recursive Neural Network–Particle Swarm Versus Nonlinear Multivariate Rational Function Algorithms for Optimization of Biodiesel Derived from Hevea brasiliensis

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This research reports the application of recursive neural network–particle swarm (RNN–PS) and nonlinear multivariate rational function (NLMRF) algorithms for optimization of biodiesel derived from non-edible feedstock of Hevea brasiliensis. Nonlinear auto-regressive with external input (NARX) model was applied with four input variables: time (45–65 min), process temperature (45–65 °C), methanol/oil molar proportion (4:1–12:1) and catalyst dosage (0.5–1.5 wt%), one target (biodiesel yield) and two delays. The RNN showed better correlation (SSE = 21.14 and R2 = 0.98) than the three NLMRFs (SSE > 300 and R2 < 0.63). Optimum conditions obtained with RNN–PS hybrid heuristic model were 60.55 min, 70 °C, methanol/oil molar ratio of 6.89 and catalyst concentration of 1.5wt% with a maximum biodiesel yield of 92.77wt% and experimental validation of 92.52 wt%. Sensitivity analysis result shows that the level of the impact of the input variables on the independent responses follows the order: catalyst concentration (43.77%) > reaction time (24.22%) > methanol/HBSO molar ratio (21.89%) > reaction temperature (10.12%). RNN–PS exhibited high capability in excellent capturing of mapping, great diversity trajectory search, rapid convergence and intrinsic guidance strategy. Functional groups, fatty acid compositions and physicochemical characteristics of the biodiesel obtained using Fourier transform infrared (FTIR), gas chromatography flame ionization detector (GC-FID) and American Standard for Material Testing (ASTMD) methods show that the quality of the biodiesel agreed with international standards. RNN–PSO is therefore proposed as a meta-heuristic and reliable optimization tool for developing a viable and sustainable route for biodiesel fuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\({A}_{\mathrm{IS}}\) :

Area under thri-internal standard peak (µV*sec)

\({M}_{\mathrm{IS}}\) :

Weight of applied internal standard (mg)

\({\Sigma }_{\mathrm{A}}\) :

Summed area under peak for fatty acids (µV/sec)

X 1 :

Reaction time (min)

a 0a 14 :

Coefficients to be determined

X 2 :

Reaction temperature (°C)

X 3 :

Methanol/HBSO molar ratio

C 1,C 2 :

Weights of local global information

CV:

Coefficient of variance

X 4 :

Catalyst concentration (wt%)

GA:

Genetic algorithm

gBest:

Best position of swarm

h:

Hidden layers

I :

Input layers

k :

Input neurons

M :

Mass of biodiesel sample (mg)

m :

Hidden neurons

M FAME :

Average molecular mass of biodiesel

n h :

Number of hidden neurons

n :

Output neurons

NARX:

Nonlinear auto-regressive with external input

n i :

Number of input neurons

NLMRF :

Nonlinear multivariate rational function

o:

Output layers

P:

Particles current position

pBest:

Best position of particle

PSO:

Particle swarm optimization

r 1,r 2 :

Two random variables

S j :

Significance of the jth input parameter

V :

Particle velocity

W :

Weight

W FAME :

Produced biodiesel (mg)

X 1-X 4 :

Independent variables

Y :

Actual response

Y m :

Mean of the actual response

Y p :

Predicted response

References

  1. Wang, B.; Yang, Z.; Xuan, J.; Jiao, K.: Crises and opportunities in terms of energy and AI technologies during the COVID-19 pandemic. Energy AI 1, 100013 (2020). https://doi.org/10.1016/j.egyai.2020.100013

    Article  Google Scholar 

  2. Esonye, C.; Onukwuli, O.D.; Ofoefule, A.U.: Optimization of production from prunus amygdalus seed oil using response surface methodology and artificial neural networks. Renew. Energy 130, 62–71 (2019). https://doi.org/10.1016/j.renene.2018.06.036

    Article  Google Scholar 

  3. Chen, S.; Ren, Y.; Friedrich, D.; Yu, Z.: Analysis to reduce duplicated features in ANN training for district heat demand prediction. Energy AI (2020). https://doi.org/10.1016/j.egyai2020.100028

    Article  Google Scholar 

  4. Halit, A.; Hajar, F.; Mohammad, T.S.; Muslume, S.C.; Shahaboddin, S.; Kwok, W.CH.; Abdelbaki, E.; Geleribe, V.; Khamy, S.E.E.: Analog hardware implementation of random neural network model. In: Proceeding of International Joint Conference on Neural Networks. IJCNN, vol. 4, pp. 197–201 (2000)

  5. Uzoh, F.C.; Nwekwe, A.; Onukwuli, O.; Ofochebe, S.; Ezekannagha, C.: Optimal route for effective conversion of rubber seed oil to biodiesel with desired key fuel properties. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jdepro.124563

    Article  Google Scholar 

  6. Naik, A.; Satapathy, S.C.; Abraham, A.: Modified socio-group optimization—a meta heuristic algorithm to solve short-term hydro thermal scheduling. Appl. Soft Comput. J. 95, 1065 (2020). https://doi.org/10.1016/j.asoc.2020.106524

    Article  Google Scholar 

  7. Nassef, A.M.; Sayed, E.T.; Rezek, H.; Abdelkareem, M.A.; Rodriguez, C.; Olabi, A.G.: Fuzzy-model with particle swarm optimization for enhancing the production of biodiesel from microalgae. Energy Sources Part A Recovery, Utilization and Environmental Effects (2018). https://doi.org/10.1080/155670362018.1549171

    Article  Google Scholar 

  8. Leke, Z.; Falah, Y.H.A.; Adam, A.J.: Concepts, methods and performance of particle swarm optimization, back-propagation and neural networks. Appl. Comput. Intell. Soft Comput. (2018). https://doi.org/10.1155/2018/9547212

    Article  Google Scholar 

  9. Hoda, Z.; Mohammad, H.N.; Ami, R.H.G.: CCSA Conscious neighborhood-based crow search algorithm for solving global optimization problems. Appl. Soft Comput. 85, 105583 (2019)

    Article  Google Scholar 

  10. SaiBharadwaj, A.V.S.L.; Niju, S.; Meera, S.B.K.M.; Anantharaman, N.: Effect of rubber seed oil biodiesel on engine performance and emission analysis. Fuel (2021). https://doi.org/10.1016/j.fuel.2021.120708

    Article  Google Scholar 

  11. Food and Agriculture Organization. National rubber: top 10 producers 2019 (2019). http://www.fao.org/faostat/en/data/QC/visualize

  12. Ulfa, M.; Mulyaziri; Burmawi; Praputri, E.; Sundari, E.; Firdaus, U.: Biodiesel production methods of rubber seed oil: a review. In: IOP Conference Series Materials and Science and Engineering, vol. 334, p. 012006 (2018). https://doi.org/10.1088/1757-899X/344/1/012006

  13. Onoji, S.E.; Iyuke, S.E.; Igbaje, A.I.; Nkazi, A.B.: Rubber seed oil: a potential renewable source of biodiesel for sustainable development in sub-saharan Africa. Energy Convers. Manag. 110, 125–134 (2016)

    Article  Google Scholar 

  14. Ennetta, R.; Soyhan, H.S.; Koyunoglu, C.: Current technologies and future trends for biodiesel production: a review. Arab J Sci Eng. (2022). https://doi.org/10.1007/s13369-022-07121-9

    Article  Google Scholar 

  15. Esonye, C.; Onukwuli, O.D.; Ofoefule, A.U.: Chemical kinetics of a two-step transesterification of dyacrodes edulis seed oil using acid-alkali catalyst. Chem. Eng. Res. Des. 145, 245–257 (2019). https://doi.org/10.1016/j.cherd.2019.03.010

    Article  Google Scholar 

  16. Bello, E.I.; Otu, F.: Physico-chemical properties of rubber (Hevea brasiliensis) seed oil, its biodiesel and blends with Diesel. Br. J. Appl. Sci. Technol. 6(3), 261–275 (2015). https://doi.org/10.9734/BJAST/2015/12548

    Article  Google Scholar 

  17. Iyayi, A.F.; Akpaka, P.O.; Ukpeoyibo, U.: Rubber seed processing for value-added latex production in Nigeria. Afr. J. Agric. Food Secur. 8(11), 001–005 (2020)

    Google Scholar 

  18. Omokhafe, K.O.; Alika, J.E.: Clonal variation and correlation of seed characters in Hevea brasiliensis Muell Arg. Ind. Crops Prod. 19(2), 175–184 (2004)

    Article  Google Scholar 

  19. Sai, B.A.V.S.L.; Niju, S.; Khadhar, M.; Meere Sheriffa, B.; Anantharaman, N.: Optimization of continuous biodiesel production from rubber seed oil (RSO) using calcined egg shell as heterogeneous catalyst. J. Environ. Chem. Eng. 8(1), 103603 (2020)

    Article  Google Scholar 

  20. Soltani, H.; Karimi, A.; Falahatpisheh, S.: The optimization of biodiesel production from transesterification of sesame oil via applying ultrasound assisted techniques: comparison of RSM and ANN-PSO hybrid model. Chem. Prod. Process. Model. (2020). https://doi.org/10.1515/cppm-2020-0076

    Article  Google Scholar 

  21. Abdul, F.P.; Priji, P.; Unni, K.N.; Mohanan, K.V.: Optimization of parameters for the production of biodiesel from rubber seed oil using Onsite lipase by response surface methodology. Biotech 8(11), 459 (2018). https://doi.org/10.1007/5/3205-018-1447-7

    Article  Google Scholar 

  22. Aryasomayajula Venkata Satya Lakshmi, S.B.; Subramania Pillai, N.; Khadhar Mohamed, M.S.B.: Biodiesel production from rubber seed oil using calcined eggshells impregnated with Al2O3 as heterogeneous catalyst: a comparative study of RSM and ANN optimization. Braz. J. Chem. Eng. 37, 351–368 (2020)

    Article  Google Scholar 

  23. Onukwuli, O.D.; Esonye, C.; Ofoefule, A.U.; Eyisi, R.: Comparative analysis of the application of artificial neural network-genetic algorithm and response surface methods-desirability function for predicting the optimal conditions for biodiesel synthesis from chrysophyllum albidum seed oil. J. Taiwan Inst. Chem. Eng. 125(3), 153–167 (2021). https://doi.org/10.1016/j.jtice.2021.06.012

    Article  Google Scholar 

  24. Ofoefule, A.U.; Esonye, C.; Onukwuli, O.D.; Nwaeze, E.; Ume, C.S.: Modeling and optimization of African pear seed oil esterification and transesterification using artificial neural network and response surface methodology comparative analysis. Ind. Crops Prod. 140, 111707 (2019). https://doi.org/10.1016/j.indcrop.2019.111707

    Article  Google Scholar 

  25. AOAC: Official Methods of Analysis, 21st edn. Association of Official Analytical Chemists, Washington, DC (2019)

    Google Scholar 

  26. Ahmad, J.; Yusup, S.; Bokhari, A.; Kamil, R.N.M.: Study of fuel properties of rubber seed oil-based biodiesel. Energy Convers. Manag. 78, 266–275 (2014)

    Article  Google Scholar 

  27. Abdoli, M.A.; Mohamadi, F.; Ghobadian, B.; Fayyazi, E.: Effective parameters on biodiesel production from feather fat oil as a cost-effective feedstock. Int. J. Environ. Res. 8(1), 139–148 (2014)

    Google Scholar 

  28. Oznan, I.; Claire, C.: Deep Recursive neural networks for compositionality in languages. In: Advances in Neural Information Processing Systems 27, NIPS Proceedings (2014)

  29. Rezk, H.; Fatty, A.; Abdelaziz, A.Y.: A comparison of global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions. Renew. Sustain. Energy Rev. 74C, 377–386 (2017). https://doi.org/10.1016/j.rser.2017.02.051

    Article  Google Scholar 

  30. Mohamed, M.A.; Zaki Diab, A.A.; Rezk, H.: Partial shading mitigation of PV systems via different meta-heustic techniques. Renew. Energy 130C, 1159–1175 (2019). https://doi.org/10.1016/j.rene.2018.08.077

    Article  Google Scholar 

  31. Betiku, E.; Ishola, N.B.: Optimization of sorrel oil biodiesel production by base heterogeneous catalyst from kola nut pod husk: neural intelligence-genetic algorithm versus neuro-fuzzy-genetic algorithm. Environ. Prog. Sustain. Enegry 39, 13393 (2020). https://doi.org/10.1002/ep.13393

    Article  Google Scholar 

  32. Okpalaeke, K.E.; Ibrahim, T.H.; Latinwo, L.M.; Betiku, E.: Mathemtical modeling and optimization studies by Artitifical neural network, genetic algorithm and response surface methodology: a case of Ferric sulfate - catalyzed esterification of Neem (azadirchta indica) seed oil. Front. Energy Res. 8, 614621 (2020). https://doi.org/10.3389/fenrg.2020.614621

    Article  Google Scholar 

  33. Buassri, A.; Loryuenyong, V.: Continuous production of biodiesel from rubber seed oil using a packed reactor with BaCl2 impregnated CaO as catalyst. Bull. Chem. React. Eng. Catal. 13(2), 320–330 (2018)

    Article  Google Scholar 

  34. Awolu, O.O.; Layokun, S.K.: Optimization of two-step transesterification production of biodiesel from neem (Azadirachta indica) oil. Int. J. Energy Environ. Eng. 4, 39–47 (2013)

    Article  Google Scholar 

  35. Sivaramakrishnam, K.; Ravikumar, P.: Determination of cetane number of biodiesel and its influence on physical properties. ARFN J. Eng. Appl. Sci. 7(2), 205–211 (2012)

    Google Scholar 

  36. Juanaid, G.; Suzana, Y.; Awais, B.; Ruzaimah, N.M.K.: Study of fuel properties of rubber seed oil-based biodiesel. Energ. Convers. Manag 74, 266–275 (2014)

    Google Scholar 

  37. Haswin Kaur G. S.; Yusup, S.; Wai, C. K.: Physico-chemical properties of crude rubber see oil for gasoline production. In: 4th International Conference on Process Engineering and Advanced Materials. Procedia Engineering, vol. 148, pp. 426–431 (2016)

  38. Roschat, W.; Siritanon, T.; Yoosuk, B.; Sudyoadsuk, T.; Promarak, V.: Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand. Renew.e Energy 101, 937–944 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Springboard Laboratories, Awka, and NOTAP/PZ laboratory, Alex Ekwueme Federal University Ndufu Alike, Abakaliki, for the availability of laboratory apparatus and analytical equipment.

Funding

Only the authors funded this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chizoo Esonye.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esonye, C., Onukwuli, O.D., Ubaka, O.C. et al. Recursive Neural Network–Particle Swarm Versus Nonlinear Multivariate Rational Function Algorithms for Optimization of Biodiesel Derived from Hevea brasiliensis. Arab J Sci Eng 48, 15979–15998 (2023). https://doi.org/10.1007/s13369-023-07947-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07947-x

Keywords

Navigation