Skip to main content
Log in

Artificial Intelligence-Based Hearing Loss Detection Using Acoustic Threshold and Speech Perception Level

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Hearing loss detection using automated audiometers and artificial intelligence methods has gained increasing attention in recent years. The proposed work aims: (a) to design an automated audiometer to diagnose hearing ability and to evaluate hearing intensity for healthy and profound hearing loss patients within 250 Hz to 8 kHz, (b) to compare the proposed automated audiometer with a conventional audiometer when estimating auditory perception level using pure tone and speech audiometers, and (c) to use the machine learning algorithms to classify hearing loss and normal subjects based on the selected features extracted from speech signals. Participants in the study included 50 healthy individuals and 50 patients with profound hearing loss. In the proposed hardware unit, the transmitted pure-tone signal and the speech signal stimulus are controlled automatically instead of being controlled manually. Using a digital potentiometer, a pure-tone audiometer can be automatically calibrated by varying the frequency and intensity of the generated tones according to the users’ responses. During speech audiometric measurements, pre-recorded speech and repeated speech signals are analyzed to estimate speech recognition threshold (SRT) and word recognition score (WRS). The designed audiometer plots the audiogram automatically, estimating SRT and WRS, and classifying the subject as normal or hearing impaired. This study demonstrates the feasibility of using Machine Learning to predict hearing impairment in patients. A support vector machine, a random forest, and an AdaBoost model produced accuracy rates of 98%, 96%, and 96%, respectively, when identifying normal and hearing loss subjects. The proposed audiometer system is miniaturized, portable, and user-friendly in comparison to conventional audiometers. Consequently, the prototype would make it possible for subjects to conduct their own audiometric tests independently and send the results along with their audiogram to a trained medical professional to receive advice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pascolini, D.; Smith, A.: Hearing impairment in 2008: a compilation of available epidemiological studies. Int. J. Audiol. 48(7), 473–485 (2009). https://doi.org/10.1080/14992020902803120

    Article  Google Scholar 

  2. “WHO methods and data sources for global burden of disease estimates 2000–2011”, Department of Health Statistics and Information Systems, WHO, Geneva (2013), Global Health Estimates Technical Paper, WHO/HIS/HSI/GHE/2013.4

  3. https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

  4. Jos, J.E.: “Chapter 8—Early Diagnosis and Prevention of Hearing Loss”, Hearing Loss, vol. 1, pp. 235–260 (2017). https://doi.org/10.1016/B978-0-12-805398-0.00008-6

  5. Jacobs, P.G.; Silaski, G.; Wilmington, D.; Gordon, S.; Helt, W.; McMillan, G.; Fausti, S.A.; Dille, M.: Development and evaluation of a portable audiometer for high-frequency screening of hearing loss from ototoxicity in homes/clinics. IEEE Trans. Biomed. Eng. 59(11), 3097–3103 (2012). https://doi.org/10.1109/TBME.2012.2204881

    Article  Google Scholar 

  6. Tse, D.; Ramsay, T.; Lelli, D.A.: Novel use of portable audiometry to track hearing fluctuations in Menière’s disease: a pilot study. Otol. Neurotol. 40(2), e130–e134 (2019). https://doi.org/10.1097/MAO.0000000000002080

    Article  Google Scholar 

  7. Ondáš, S.; Kiktová, E.; Pleva, M.; Oravcová, M.; Hudák, L.; Juhár, J.; Zimmermann, J.: Pediatric speech audiometry web application for hearing detection in the home environment. Electronics 9(6), 994 (2020)

    Article  Google Scholar 

  8. Ashley, W.P.: “Chapter: 9 Neurotology”. Youmans and Winn Neurological Surgery, vol. 04, pp. 29–53 (2017). https://doi.org/10.1044/2014_JSLHR-H-13-0017

  9. Prell, Le.; Colleen, G., et al.: Extended high-frequency thresholds in college students: effects of music player use and other recreational noise. J. Am. Acad. Audiol. 24(8), 725–739 (2013). https://doi.org/10.3766/jaaa.24.8.9

    Article  Google Scholar 

  10. Schlauch, R.S.; Anderson, E.S.; Micheyla, C.: A demonstration of improved precision of word recognition scores. J. Speech Lang. Hear. Res. 57(2), 543–555 (2014). https://doi.org/10.1044/2014_JSLHR-H-13-0017

    Article  Google Scholar 

  11. Pragt, L., et al.: Preliminary evaluation of automated speech recognition apps for the hearing impaired and deaf. Front. Digit. Health (2022). https://doi.org/10.3389/fdgth.2022.806076

    Article  Google Scholar 

  12. Colsman, A.; Supp, G.G.; Neumann, J.; Schneider, T.R.: Evaluation of accuracy and reliability of a mobile screening audiometer in normal hearing adults. Front. Psychol. 11, 744 (2020)

    Article  Google Scholar 

  13. Wijaya, N.H.; Ibrahim, M.; Shahu, N.; Sattar, M.U.: Arduino-based digital advanced audiometer. J. Robot. Control 2(2), 83–87 (2021). https://doi.org/10.18196/jrc.225783

    Article  Google Scholar 

  14. Musiek, F.E., et al.: Perspectives on the pure-tone audiogram. J. Am. Acad. Audiol. 28(7), 655–671 (2017). https://doi.org/10.3766/jaaa.16061

    Article  Google Scholar 

  15. Nuesse, T., et al.: Exploring the link between cognitive abilities and speech recognition in the elderly under different listening conditions. Front. Psychol. 9, 678 (2018). https://doi.org/10.3389/fpsyg.2018.00678

    Article  Google Scholar 

  16. Bornman, M.; Swanepoel, W.; De Jager, L.B.; Eikelboom, R.H.: Extended high-frequency smartphone audiometry: validity and reliability. J. Am. Acad. Audiol. 30(3), 217–226 (2019)

    Google Scholar 

  17. Catalbas, M.C.; Guler, H.: Design and implementation of software based audiometer system. J. Image Graph. 5(1), 29–33 (2017)

    Article  Google Scholar 

  18. Kapul, A.A.; Zubova, E.I.; Torgaev, S.N.; Drobchik, V.V.: Pure tone audiometer. J. Phys. Conf. 881, 75–85 (2017)

    Article  Google Scholar 

  19. Tan, S.; Loh, S.; Chee, W.: Speech-enabled pure tone audiometer. In: International Symposium on Intelligent Signal Processing and Communication Systems, pp. 361–364 (2007). https://doi.org/10.1109/ISPACS.2007.4445898

  20. Sanchez-Lopez, R.; Nielsen, S.G.; El-Haj-Ali, M.; Bianchi, F.; Fereczkowski, M.; Cañete, O.M.; Wu, M.; Neher, T.; Dau, T.; Santurette, S.: Auditory tests for characterizing hearing deficits in listeners with various hearing abilities: the BEAR test battery. Front. Neurosci. 29(15), 724007 (2021). https://doi.org/10.3389/fnins.2021.724007

    Article  Google Scholar 

  21. Soares, J.C.; Veeranna, S.A.; Parsa, V.; Allan, C.; Ly, W.; Duong, M.; Folkeard, P.; Moodie, S.; Allen, P.: Verification of a mobile psychoacoustic test system. Audiol. Res. 11(4), 673–690 (2021). https://doi.org/10.3390/audiolres11040061

    Article  Google Scholar 

  22. Van Zyl, M.; Swanepoel, D.W.; Myburgh, H.C.: Modernising speech audiometry: using a smartphone application to test word recognition. Int. J. Audiol. 57(3), 1–9 (2018). https://doi.org/10.1080/14992027.2018.1463465

    Article  Google Scholar 

  23. Garadat, S.N.; Abdulbaqi, K.J.; Haj-Tas, M.A.: The development of the University of Jordan word recognition test. Int. J. Audiol. 56(6), 1–7 (2017)

    Article  Google Scholar 

  24. Al-Manie, M.A.; Wang, W.J.: Inverse Gabor transform for speech enhancement. Acoust. Aust. 41(3), 225–231 (2013)

    Google Scholar 

  25. Murugappan, M.; Thirumani, R.; Omar, M.I.; Murugappan, S.: Development of cost-effective ECG data acquisition system using labVIEW for clinical applications. In: 10th IEEE Colloquium on Signal Processing and its Applications, 7–9 March 2014, Kuala Lumpur, Malaysia, pp. 100–105 (2014)

  26. Holcomb, M.A., et al.: The effects of paired versus sequential stimulation on speech recognition outcomes of adult cochlear implant recipients. Audiol. Neurootol. 26(3), 188–194 (2021). https://doi.org/10.1159/000511449

    Article  Google Scholar 

  27. Marinova-Todd, S.; Sui, C.; Jenstad, L.: Speech audiometry on non-native speakers of English. Can. J. Speech Lang. Pathol. Audiol. 35, 220–227 (2011)

    Google Scholar 

  28. Guthrie, L.A.; Mackersie, C.L.: A comparison of presentation levels to maximize word recognition scores. J. Am. Acad. Audiol. 20(6), 381–390 (2009). https://doi.org/10.3766/jaaa.20.6.6

    Article  Google Scholar 

  29. Stach, B.A.: Clinical Audiology: An Introduction. Cengage Learning (2016)

    Google Scholar 

  30. Djurović, I.; Sejdić, E.; Jiang, J.: Frequency-based window width optimization for S-transform. AEU Int. J. Electron. Commun. 62(4), 245–250 (2008). https://doi.org/10.1016/j.aeue.2007.03.014

    Article  MATH  Google Scholar 

  31. Murugappan, M.; Baharuddin, N.Q.I.; Jerritta, S.: DWT and MFCC based human emotional speech classification using LDA. In: International Conference on Bio-Medical Engineering (ICoBE 2012), pp. 203–206. IEEE Publication, Penang

  32. Wali, M.K, et al.: Development of discrete wavelet transform (DWT) toolbox for signal processing applications. In: 2012 International Conference on Biomedical Engineering (ICoBE), Penang, Malaysia, pp. 211–216 (2012). https://doi.org/10.1109/ICoBE.2012.6179007.

  33. Schimmel, M.; Gallart, J.: The inverse S-transform in filters with time-frequency localization. Trans. Signal Process. 53, 4417–4422 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mirza, A.F.; Hasan, M.R.: Correlation based fundamental frequency extraction method in noisy speech signal. Int. J. Comput. Sci. Eng. Inf. Technol. 7(1), 01–12 (2017). https://doi.org/10.5121/ijcseit.2017.7101

    Article  Google Scholar 

  35. Schreiner, C.; Brian, M.: Representation of loudness in the auditory cortex (2015). https://doi.org/10.1016/B978-0-444-62630-1.00004-4.

  36. Vaidya, S.; Shah, K.: Audio denoising, recognition and retrieval by using feature vectors. J. Comput. Eng. 16(2), 3–26 (2014)

    Google Scholar 

  37. Burred, J.J.; Lerch, A.: Hierarchical automatic audio signal classification. Audio Eng. Soc. 52(7), 724–739 (2004)

    Google Scholar 

  38. Majeed, S.A.; Husain, H.; Samad, S.A.; Idbeaa, T.F.: Mel frequency cepstral coefficients (Mfcc) feature extraction enhancement in the application of speech recognition: a comparison study. J. Theor. Appl. Inf. Technol. 79(1), 38–56 (2015)

    Google Scholar 

  39. Ahmadi, A.; Bazregarzadeh, H.; Kazemi, K.: Automated detection of driver fatigue from electroencephalography through wavelet-based connectivity. Biocybern. Biomed. Eng. 41(1), 316–332 (2021). https://doi.org/10.1016/j.bbe.2020.08.009

    Article  Google Scholar 

  40. Murugappan, M.; Zheng, B.S.; Khairunizam, W.: Recurrent quantification analysis-based emotion classification in stroke using electroencephalogram signals. Arab. J. Sci. Eng. 46, 9573–9588 (2021). https://doi.org/10.1007/s13369-021-05369-1

    Article  Google Scholar 

  41. Chen, Y.: Comparing content marketing strategies of digital brands using machine learning. Human. Soc. Sci. Commun. (2023). https://doi.org/10.1057/s41599-023-01544-x

    Article  Google Scholar 

  42. Chavarría-Bolaños, D.; Rodríguez-Wong, L.; Noguera-González, D.; Esparza-Villalpando, V.; Montero-Aguilar, M.; Pozos-Guillén, A.: Sensitivity, specificity, predictive values, and accuracy of three diagnostic tests to predict inferior alveolar nerve blockade failure in symptomatic irreversible pulpitis. Pain Res. Manag. 2017, 3108940 (2017). https://doi.org/10.1155/2017/3108940

    Article  Google Scholar 

  43. Shreffler, J.; Huecker, M.R.: Diagnostic Testing Accuracy: Sensitivity, Specificity, Predictive Values and Likelihood Ratios. StatPearls (2022)

    Google Scholar 

  44. Baratloo, A.; Hosseini, M.; Negida, A.; El Ashal, G.: Part 1: Simple definition and calculation of accuracy, sensitivity and specificity. Emerg (Tehran) 3(2), 48–49 (2015)

    Google Scholar 

  45. Arafiyah, R.; Hermin, F.: Data mining for dengue haemorrhagic fever (DHF) prediction with naive Bayes method. J. Phys. (2018). https://doi.org/10.1088/1742-6596/948/1/012077

    Article  Google Scholar 

  46. Lee, J.W.; Bance, M.: Hearing loss. Pract. Neurol. 19(1), 28–35 (2019)

    Article  Google Scholar 

  47. Fletcher, H.: A method of calculating hearing loss for speech from an audiogram. J. Acoust. Soc. Am. 22, 1–5 (1950)

    Article  Google Scholar 

  48. Maeda, Y.; Takao, S.; Sugaya, A.; Kataoka, Y.; Kariya, S.; Tanaka, S.; Nishizaki, K.: Relationship between pure-tone audiogram findings and speech perception among older Japanese persons. Acta Oto Laryngologica 138(2), 140–144 (2018). https://doi.org/10.1080/00016489.2017.1378435

    Article  Google Scholar 

  49. Chien, C.H.; Tu, T.Y.; Chien, S.F., et al.: Relationship between Mandarin speech reception thresholds and pure-tone thresholds in the geriatric population. J. Formos. Med. Assoc. 105(10), 832–838 (2006). https://doi.org/10.1016/S0929-6646(09)60270-9

    Article  Google Scholar 

  50. Zhao, Y.; Li, J.; Zhang, M.; Lu, Y.; Xie, H.; Tian, Y.; Qiu, W.: Machine learning models for the hearing impairment prediction in workers exposed to complex industrial noise: a pilot study. Ear Hear. 40(3), 690 (2019)

    Article  Google Scholar 

  51. Kim, T.S.; Chung, J.W.: Evaluation of age-related hearing loss. Korean J. Audiol. 17, 50–53 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants who took part actively in the audiometer tests. We confirm that all the subjects agreed to participate in the study and gave their informed consent for publication.

Funding

The authors state no funding is involved.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to U. Snekhalatha or M. Murugappan.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee. The study was approved by the Bioethics Committee of SRM Research Centre and Hospital with Ethics Clearance Number 1769/IEC/2019.

Appendix

Appendix

See Fig. 8.

Fig. 8
figure 8

Software implementation of the decision-making module using labview

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankari, V.M.R., Snekhalatha, U., Murugappan, M. et al. Artificial Intelligence-Based Hearing Loss Detection Using Acoustic Threshold and Speech Perception Level. Arab J Sci Eng 48, 14883–14899 (2023). https://doi.org/10.1007/s13369-023-07927-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07927-1

Keywords

Navigation