Skip to main content
Log in

The Developed Conservation Element and Solution Element Method in Two-Dimensional Spherical Coordinate and Its Application to the Analysis of Non-Fourier Heat Conduction

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In solving the system of hyperbolic equations, highly accurate numerical methods which are easy to apply and have a shorter run time without causing numerical oscillations are more popular. In the present study, the space–time conservation element and solution element (CESE) method has been developed into two-dimensional spherical coordinates using polar elements. Then, the developed CESE method has been applied to investigate the propagation of a non-Fourier thermal waves in biological tissue. To evaluate the performance of the CESE method, the numerical results are compared to the existing semi-analytical results, and it is observed that the results are in good agreement. The experimental test is then conducted to measure the transient temperature behavior of the spherical Intralipid phantom irradiated by a near-infrared pulsed laser. A comparison of experimental and numerical results demonstrates the applicability of the dual phase lag model in the prediction of non-Fourier heat conduction in biological tissue. In addition, the contours of heat flux and temperature during and after laser irradiation are presented, and the propagation of thermal waves in the tissue is examined and discussed. The results indicate that the effects of the two-dimensional thermal wave appear after stopping the laser irradiation. Finally, the study of the effect of tissue type on wave progression in the tumor, muscle, and fat demonstrates that in the fat tissue, having the lowest thermal diffusivity, the thermal progression is less than the tumor and muscle. However, the temperature distribution in the fat tissue is greater than in the other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(c\) :

Specific heat of tissue

\(c_{{\text{b}}}\) :

Specific heat of blood

\({\varvec{F}}\) :

Flux vector in radial direction

\({\varvec{G}}\) :

Flux vector in angular direction

\({\varvec{H}}\) :

Space–time flux vector

\(k\) :

Thermal conductivity

\({\varvec{q}}\) :

Heat flux vector

\({\varvec{q}}_{{\mathbf{r}}}\) :

Heat flux in radial direction

\({\varvec{q}}_{{\varvec{\theta}}}\) :

Heat flux in angular direction

\(q_{{\text{L}}}\) :

Laser intensity

\(Q_{{\text{m}}}\) :

Metabolic heat generation

\(Q_{{\text{r}}}\) :

Dimensionless heat flux in radial direction

\(Q_{\theta }\) :

Dimensionless heat flux in angular direction

\(r\) :

Coordinate variable in radial direction

\({\varvec{r}}\) :

2-D position vector

\(R\) :

Diffuse reflectance

\({\varvec{S}}\) :

Source vector

\(t\) :

Time

\(T\) :

Temperature of tissue

\(T_{{\text{b}}}\) :

Blood temperature

\({\varvec{U}}\) :

Primary variable vector

\(\zeta\) :

Dimensionless radius

\(\eta\) :

Dimensionless time

\(\theta\) :

Coordinate variable in angular direction

\(\theta^{*}\) :

Dimensionless angle

\(\rho\) :

Density of tissue

\(\rho_{{\text{b}}}\) :

Density of blood

\(\tau_{q}\) :

Phase lag time of heat flux

\(\tau_{{\text{T}}}\) :

Phase lag time of temperature gradient

\({\Phi }\) :

Dimensionless temperature

\(\omega_{{\text{b}}}\) :

Blood perfusion rate

References

  1. Dhar, P.; Paul, A.; Narasimhan, A.; Das, S.K.: Analytical prediction of sub–surface thermal history in translucent tissue phantoms during plasmonic photo–thermotherapy (PPTT). J. Therm. Biol. 62, 143–149 (2016). https://doi.org/10.1016/j.jtherbio.2016.06.023

    Article  Google Scholar 

  2. Kumar, D.; Rai, K.: A study on thermal damage during hyperthermia treatment based on DPL model for multilayer tissues using finite element Legendre wavelet Galerkin approach. J. Therm. Biol. 62, 170–180 (2016). https://doi.org/10.1016/j.jtherbio.2016.06.020

    Article  Google Scholar 

  3. Turkyilmazoglu, M.: Heat transfer from warm water to a moving foot in a footbath. Appl. Therm. Eng. 98, 280–287 (2016). https://doi.org/10.1016/j.applthermaleng.2015.12.027

    Article  Google Scholar 

  4. Chang, S.C.: The method of space-time conservation element and solution element—a new approach for solving the Navier-Stokes and Euler equations. J. Comput. Phys. 119(2), 295–324 (1995). https://doi.org/10.1006/jcph.1995.1137

    Article  MathSciNet  MATH  Google Scholar 

  5. Poshti, A.G.T.; Khosravirad, A.; Ayani, M.B.: Analyses of non-Fourier heat conduction in 1-D spherical biological tissue based on dual-phase-lag bio-heat model using the conservation element/solution element (CE/SE) method: a numerical study. Int. Commun. Heat Mass Transf. 132, 105881 (2022)

    Article  Google Scholar 

  6. Chang, S.C.; Wang, X.Y.; Chow, C.Y.: The method of space-time conservation element and solution element-applications to one-dimensional and two-dimensional time-marching flow problems. In: 12th Computational Fluid Dynamics Conference, p. 1754 (1995). https://doi.org/10.2514/6.1995-1754

  7. Chang, S.C.; Wang, X.Y.; Chow, C.Y.: The space-time conservation element and solution element method: a new high-resolution and genuinely multidimensional paradigm for solving conservation laws. J. Comput. Phys. 156(1), 89–136 (1999). https://doi.org/10.1006/jcph.1999.6354

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, Z.C.; Yu, S.J.; Chang, S.C.: A space-time conservation element and solution element method for solving the two-and three-dimensional unsteady Euler equations using quadrilateral and hexahedral meshes. J. Comput. Phys. 175(1), 168–199 (2002). https://doi.org/10.1006/jcph.2001.6934

    Article  MATH  Google Scholar 

  9. Zhang, Z.C.; Yu, S.; Wang, X.Y.; Chang, S.C.; Himansu, A.; Jorgenson, P.: The CE/SE method for Navier-Stokes equations using unstructured meshes for flows at all speeds. In: 38th Aerospace Sciences Meeting and Exhibit, p. 393 (2000). https://doi.org/10.2514/6.2000-393

  10. Zhang, Z.C.; Yu, S.; He, H.; Chang, S.C.: Direct calculations of two-and three-dimensional detonations by an extended CE/SE method. In: 39th Aerospace Sciences Meeting and Exhibit, p. 476 (2001). https://doi.org/10.2514/6.2001-476

  11. Qamar, S.; Mudasser, S.: On the application of a variant CE/SE method for solving two-dimensional ideal MHD equations. Appl. Numer. Math. 60(6), 587–606 (2010). https://doi.org/10.1016/j.apnum.2010.02.005

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, C.L.; Choudhari, M.M.: Hypersonic viscous flow over large roughness elements. Theor. Comput. Fluid Dyn. 25(1–4), 85–104 (2011). https://doi.org/10.1007/s00162-010-0191-9

    Article  MATH  Google Scholar 

  13. Shen, H.; Wen, C.Y.; Saldívar Massimi, H.: Application of CE/SE method to study hypersonic non-equilibrium flows over spheres. In: 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, p. 2509 (2014). https://doi.org/10.2514/6.2014-2509

  14. Weng, C.; Gore, J.P.: A numerical study of two-and three-dimensional detonation dynamics of pulse detonation engine by the CE/SE method. Acta Mech. Sin. 21(1), 32–39 (2005). https://doi.org/10.1007/s10409-004-0004-8

    Article  MATH  Google Scholar 

  15. Chou, Y.; Yang, R.J.: Two-dimensional dual-phase-lag thermal behavior in single-/multi-layer structures using CESE method. Int. J. Heat Mass Transf. 52(1), 239–249 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.025

    Article  MATH  Google Scholar 

  16. Gang, W.; De-Liang, Z.; Kai-Xin, L.: An improved CE/SE scheme and its application to detonation propagation. Chin. Phys. Lett. 24(12), 3563 (2007). https://doi.org/10.1088/0256-307X/24/12/074

    Article  Google Scholar 

  17. Wang, G.; Zhu, H.; Sun, Q.; Zhang, D.; Liu, K.: An improved CE/SE scheme and its application to dilute gas–particle flows. Comput. Phys. Commun. 182(8), 1589–1601 (2011). https://doi.org/10.1016/j.cpc.2011.04.004

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, G.; Zhang, D.; Liu, K.; Wang, J.: An improved CE/SE scheme for numerical simulation of gaseous and two-phase detonations. Comput. Fluids 39(1), 168–177 (2010). https://doi.org/10.1016/j.compfluid.2009.07.010

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, J.; Liu, K.; Zhang, D.: An improved CE/SE scheme for multi-material elastic–plastic flows and its applications. Comput. Fluids 38(3), 544–551 (2009). https://doi.org/10.1016/j.compfluid.2008.04.014

    Article  MATH  Google Scholar 

  20. Noor, S.; Qamar, S.: Solution of a multi-dimensional batch crystallization model with fines dissolution using CE/SE method. Life Sci. J. 23, 337–341 (2014)

    Google Scholar 

  21. Zhang, Y.; Zeng, Z.; Chen, J.: The improved space–time conservation element and solution element scheme for two-dimensional dam-break flow simulation. Int. J. Numer. Methods Fluids 68(5), 605–624 (2012). https://doi.org/10.1002/fld.2525

    Article  MathSciNet  MATH  Google Scholar 

  22. Qamar, S.; Warnecke, G.: Application of space–time CE/SE method to shallow water magnetohydrodynamic equations. J. Comput. Appl. Math. 196(1), 132–149 (2006). https://doi.org/10.1016/j.cam.2005.08.014

    Article  MathSciNet  MATH  Google Scholar 

  23. Jiang, C.; Feng, X.; Zhang, J.; Zhong, D.: AMR simulations of magnetohydrodynamic problems by the CESE method in curvilinear coordinates. Sol. Phys. 267(2), 463–491 (2010). https://doi.org/10.1007/s11207-010-9649-6

    Article  Google Scholar 

  24. Paul, A.; Narasimhan, A.; Kahlen, F.J.; Das, S.K.: Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating. J. Therm. Biol. 41, 77–87 (2014). https://doi.org/10.1016/j.jtherbio.2014.02.010

    Article  Google Scholar 

  25. Sahoo, N.; Ghosh, S.; Narasimhan, A.; Das, S.K.: Investigation of non-Fourier effects in bio-tissues during laser assisted photothermal therapy. Int. J. Therm. Sci. 76, 208–220 (2014). https://doi.org/10.1016/j.ijthermalsci.2013.08.014

    Article  Google Scholar 

  26. Singh, G.; Anand, S.; Lall, B.; Srivastava, A.; Singh, V.: A low-cost portable wireless multi-frequency electrical impedance tomography system. Arab. J. Sci. Eng. 44(3), 2305–2320 (2019). https://doi.org/10.1007/s13369-018-3435-4

    Article  Google Scholar 

  27. Li, C.; Miao, J.; Yang, K.; Guo, X.; Tu, J.; Huang, P., et al.: Fourier and non-Fourier bio-heat transfer models to predict ex vivo temperature response to focused ultrasound heating. J. Appl. Phys. 123(17), 174906 (2018)

    Article  Google Scholar 

  28. Qiu, T.; Tien, C.: Heat transfer mechanisms during short-pulse laser heating of metals. J. Heat Transf. 115(4), 835–841 (1993). https://doi.org/10.1115/1.2911377

    Article  Google Scholar 

  29. Maurer, M.; Thompson, H.: Non-Fourier effects at high heat flux. J. Heat Transf. 95(2), 284–286 (1973). https://doi.org/10.1115/1.3450051

    Article  Google Scholar 

  30. Cimmelli, V.A.; Frischmuth, K.: Hyperbolic heat conduction at cryogenic temperatures. Reniconti Del Circolo Matematico Di Palermo. 45, 137–145 (1996)

    MATH  Google Scholar 

  31. Turkyilmazoglu, M.: Heat transfer enhancement feature of the Non-Fourier Cattaneo-Christov heat flux model. J. Heat Transf. 143(9), 094501 (2021)

    Article  Google Scholar 

  32. Jafarimoghaddam, A.; Turkyilmazoglu, M.; Pop, I.: Threshold for the generalized Non-Fourier heat flux model: Universal closed form analytic solution. Int. Commun. Heat Mass Transf. 123, 105204 (2021)

    Article  Google Scholar 

  33. Antaki, P.J.: New interpretation of non-Fourier heat conduction in processed meat. J. Heat Transf. 127(2), 189–193 (2005). https://doi.org/10.1115/1.1844540

    Article  Google Scholar 

  34. Tzou, D.Y.: Macro-to Microscale Heat Transfer: The Lagging Behavior. Wiley, Chichester (2015)

    Google Scholar 

  35. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948). https://doi.org/10.1152/jappl.1948.1.2.93

    Article  Google Scholar 

  36. Liu, K.C.: Analysis for high-order effects in thermal lagging to thermal responses in biological tissue. Int. J. Heat Mass Transf. 81, 347–354 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.035

    Article  Google Scholar 

  37. Yu, S.T.; Chang, S.C.; Yu, S.T.; Chang, S.C.: Treatments of stiff source terms in conservation laws by the method of space-time conservation element/solution element. In: 35th Aerospace Sciences Meeting and Exhibit, p. 435 (1997). https://doi.org/10.2514/6.1997-435

  38. Masoumi, S.; Ansari, M.A.; Mohajerani, E.; Genina, E.A.; Tuchin, V.V.: Combination of analytical and experimental optical clearing of rodent specimen for detecting beta-carotene: phantom study. J. Biomed. Opt. 23(9), 095002 (2018)

    Article  Google Scholar 

  39. Vuylsteke, M.; Van Dorpe, J.; Roelens, J.; De Bo, T.; Mordon, S.: Endovenous laser treatment: a morphological study in an animal model. Phlebology 24(4), 166–175 (2009). https://doi.org/10.1258/phleb.2009.008070

    Article  Google Scholar 

  40. Alemzadeh-Ansari, M.J.; Ansari, M.A.; Zakeri, M.; Haghjoo, M.: Influence of radiant exposure and repetition rate in infrared neural stimulation with near-infrared lasers. Lasers Med. Sci. 34(8), 1555–1566 (2019). https://doi.org/10.1007/s10103-019-02741-4

    Article  Google Scholar 

  41. Ramadan, K.: Semi-analytical solutions for the dual phase lag heat conduction in multilayered media. Int. J. Therm. Sci. 48(1), 14–25 (2009). https://doi.org/10.1016/j.ijthermalsci.2008.03.004

    Article  Google Scholar 

  42. Zhou, J.; Chen, J.; Zhang, Y.: Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Comput. Biol. Med. 39(3), 286–293 (2009). https://doi.org/10.1016/j.compbiomed.2009.01.002

    Article  Google Scholar 

  43. Zhang, Y.: Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues. Int. J. Heat Mass Transf. 52(21–22), 4829–4834 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.007

    Article  MATH  Google Scholar 

  44. Kaminski, W.: Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. 112(3), 555–560 (1990). https://doi.org/10.1115/1.2910422

    Article  Google Scholar 

  45. Zhou, J.; Zhang, Y.; Chen, J.: An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues. Int. J. Therm. Sci. 48(8), 1477–1485 (2009). https://doi.org/10.1016/j.ijthermalsci.2008.12.012

    Article  Google Scholar 

  46. Mitra, K.; Kumar, S.; Vedevarz, A.; Moallemi, M.: Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117(3), 568–573 (1995). https://doi.org/10.1115/1.2822615

    Article  Google Scholar 

  47. Converse, M.; Bond, E.J.; Hagness, S.C.; Van Veen, B.D.: Ultrawide-band microwave space-time beamforming for hyperthermia treatment of breast cancer: a computational feasibility study. IEEE Trans. Microw. Theory Tech. 52(8), 1876–2189 (2004). https://doi.org/10.1109/TMTT.2004.832012

    Article  Google Scholar 

  48. Xu, F.; Seffen, K.; Lu, T.: Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf. 51(9–10), 2237–2259 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Author M.A.A. was supported by Grant No. 98029460 of Iranian National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bagher Ayani.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poshti, A.G.T., Ansari, M.A. & Ayani, M.B. The Developed Conservation Element and Solution Element Method in Two-Dimensional Spherical Coordinate and Its Application to the Analysis of Non-Fourier Heat Conduction. Arab J Sci Eng 48, 12371–12387 (2023). https://doi.org/10.1007/s13369-023-07797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07797-7

Keywords

Navigation