Skip to main content
Log in

Deep Learning-Based Modified Bidirectional LSTM Network for Classification of ADHD Disorder

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Attention deficit hyperactivity disorder (ADHD) is a neurological disorder that affects an individual’s behavior. The rising cases of ADHD among children and adolescents worldwide have raised the concern and require techniques for its early diagnosis and identification. The symptoms of ADHD are characterized by patterns of hyperactivity, inattention, and impulsivity. Recent advances in neuroimaging have allowed researchers to obtain the functional and structural patterns of the brain affected by ADHD. This work considers the resting state functional magnetic imaging (rs-fMRI) data and analyzes the functional connectivity of 40 subjects (20 ADHD and 20 healthy controls) through voxel size blood-oxygen-level-dependent (BOLD) signal. These BOLD signals are functionally relevant to the corresponding resting state networks (RSN). In this paper, we have proposed a modified deep learning-based bidirectional long short-term memory (BLSTM) model that automates the classification of ADHD through the identified voxels within the active region of the RSN. Initially, we have visualized the 28 active regions of RSN and time series of behavioral data of 40 subjects with 176 time stamps. Then, the proposed modified BLSTM has been trained by using the feature vector \({(40\times 261\times 28)}\) for each subject and Adam hyper-parameter for optimization. The experimental results represent that the proposed model outperforms the many other models by achieving the classification accuracy of \({87.50\%}\). We have also provided a detailed comparative analysis of the proposed model with the different existing state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Miao, B.; Zhang, L.L.; Guan, J.L.; Meng, Q.F.; Zhang, Y.L.: Classification of ADHD individuals and neurotypicals using reliable RELIEF: a resting-state study. IEEE Access 7, 62163–62171 (2019). https://doi.org/10.1109/ACCESS.2019.2915988

    Article  Google Scholar 

  2. Zhang-James, Y.; Chen, Q.; Kuja-Halkola, R.; Lichtenstein, P.; Larsson, H.; Faraone, S.V.: Machine-Learning prediction of comorbid substance use disorders in ADHD youth using Swedish registry data. J. Child Psychol. Psychiatry 61, 1370–1379 (2020). https://doi.org/10.1111/jcpp.13226

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tenev, A.; Markovska-Simoska, S.; Kocarev, L.; Pop-Jordanov, J.; Müller, C.G.: Machine learning approach for classification of ADHD adults. Int. J. Psychophysiol. 93, 162–6 (2014). https://doi.org/10.1016/j.ijpsycho.2013.01.008

    Article  PubMed  Google Scholar 

  4. Vu, H.; Kim, H.-C.; Jung, M.; Lee, J.-H.: fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations. NeuroImage 223, 117328 (2020). https://doi.org/10.1016/j.neuroimage.2020.117328

    Article  PubMed  Google Scholar 

  5. Thomas, R.; Sanders, S.; Doust, J.; Beller, E.; Glasziou, P.: Prevalence of attention-deficit /hyperactivity disorder: a systematic review and meta-analysis. Pediatrics 135, e994–e1001 (2015). https://doi.org/10.1542/peds.2014-3482

    Article  PubMed  Google Scholar 

  6. Mao, Z.; Su, Y.; Xu, G.; Wang, X.; Huang, Y.; Yue, W.; Sun, L.; Xiong, N.: Spatio-temporal deep learning method for ADHD fMRI classification. Inf. Sci. 499, 1–11 (2019). https://doi.org/10.1016/j.ins.2019.05.043

    Article  ADS  Google Scholar 

  7. Biswal, B.; Yetkin, F.Z.; Haughton, V.M.; Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Mag. Resonance Med. 34, 537–541 (1995). https://doi.org/10.1002/mrm.1910340409

    Article  CAS  Google Scholar 

  8. Yuan, H.; Zotev, V.; Phillips, R.; Bodurka, J.: Correlated slow fluctuations in respiration, EEG, and BOLD fMRI. NeuroImage 79, 81–93 (2013). https://doi.org/10.1016/j.neuroimage.2013.04.068

    Article  PubMed  Google Scholar 

  9. McNorgan, C.; Judson, C.; Handzlik, D.; Holden, J.G.: Linking ADHD and behavioral assessment through identification of shared diagnostic task-based functional connections. Front. Physiol. 11, 1595 (2020). https://doi.org/10.3389/fphys.2020.583005

    Article  Google Scholar 

  10. Oh, K.; Chung, Y.C.; Kim, K.W.; et al.: Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-54548-6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hjelm, R.D.; Damaraju, E.; Cho, K.; Laufs, H.; Plis, S.M.; Calhoun, V.D.: Recurrent neural networks for spatiotemporal dynamics of intrinsic networks from fMRI Data. CoRR abs/1611.00864 (2019). http://arxiv.org/abs/1611.00864

  12. Sörös, P.; Hoxhaj, E.; Borel, P.; et al.: Hyperactivity/restlessness is associated with increased functional connectivity in adults with ADHD: a dimensional analysis of resting state fMRI. BMC Psychiatry 19, 43 (2019). https://doi.org/10.1186/s12888-019-2031-9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schmidhuber, J.; Hochreiter, S.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  PubMed  Google Scholar 

  14. Siddiqui, Mohammad Khubeb; Islam, Md.; Kabir, Ashad: A novel quick seizure detection and localization through brain data mining on ECoG dataset. Neural Comput. Appl. 31, 1–14 (2019). https://doi.org/10.1007/s00521-018-3381-9

  15. Siddiqui, M.K.; Huang, X.; Morales-Menendez, R.; Hussain, N.; Khatoon, K.: Machine learning based novel cost-sensitive seizure detection classifier for imbalanced EEG data sets. Int. J. Interact. Des. Manufa. (IJIDeM) 14, 1491–1509 (2020). https://doi.org/10.1007/s12008-020-00715-3

    Article  Google Scholar 

  16. Liu, X.; Chang, C.; Duyn, J.H.: Deco mposition of spontaneous brain activity into distinct fMRI co-activation patterns. Front. Syst. Neurosci. (2013). https://doi.org/10.3389/fnsys.2013.00101

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yan, W.; Calhoun, V.; Song, M.; Cui, Y; Shengfeng, H. Y.; Fan, L.; et.al.: Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data. EBioMedicine 47, 543–552 (2019).https://doi.org/10.1016/j.ebiom.2019.08.023

  18. Dekkers, T.J.; Agelink van Rentergem, J.A.; Koole, A.; van den Wildenberg, W.P.M.; Popma, A.; Bexkens, A.; Stoffelsen, R.; Diekmann, A.; Huizenga, H.M.: Time-on-task effects in children with and without ADHD: depletion of executive resources or depletion of motivation?. Eur. Child Adolesc. Psychiatry 26, 1471-1481 (2017). https://doi.org/10.1007/s00787-017-1006-y

  19. Allen, E.A.; Erhardt, E.B.; Damaraju, E.; Gruner, W.; Segall, J.M.; Silva, R.F.; Havlicek, M.; Rachakonda, S.; Fries, J.; Kalyanam, R.; Michael, A.; Caprihan, A.; Turner, J.A.; et al.: A baseline for the multivariate comparison of resting-state networks. Front. Syst. Neurosci. 5, 2 (2011). https://doi.org/10.3389/fnsys.2011.00002

    Article  PubMed  PubMed Central  Google Scholar 

  20. Craddock, R.C.; James, G.A.; Holtzheimer, P.E., III.; Hu, X.P.; Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human Brain Map. 33, 1914–28 (2012). https://doi.org/10.1002/hbm.21333

  21. Jiang, K.; Wang, J.; Zheng, A.; Li, L.; Yi, Y.; Ding, L.; Li, H.; Dong, X.; Zang, Y.: Amplitude of low-frequency fluctuation of resting-state fMRI in primary nocturnal enuresis and attention deficit hyperactivity disorder. Int. J. Dev. Neurosci. 80, 235–245 (2020). https://doi.org/10.1002/jdn.10020

    Article  PubMed  Google Scholar 

  22. Monastra, V.J.; Lubar, J.F.; Linden, M.; VanDeusen, P.; Green, G.; Wing, W.; Phillips, A.; Fenger, T.N.: Assessing attention deficit hyperactivity disorder via quantitative electroencephalography: An initial validation study. Neuropsychology 13, 424–433 (1999). https://doi.org/10.1037/0894-4105.13.3.424

    Article  PubMed  Google Scholar 

  23. Mueller, A.; Candrian, G.; Kropotov, J.D.; Ponomarev, V.A.; Baschera, G.M.: Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomed. Phys. 4, S1–S1 (2010). https://doi.org/10.1186/1753-4631-4-s1-s1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liang, S.; Hsieh, T.; Chen, P.; Wu, M.; Kung, C.; Lin, C.; Shaw, F.: Differentiation between resting-state fMRI data from ADHD and normal subjects: based on functional connectivity and machine learning. In: International conference on Fuzzy Theory and Its Applications (iFUZZY2012),Taichung, Taiwan,16–18 Nov. (2012). https://doi.org/10.1109/iFUZZY.2012.6409719

  25. Dvornek Nicha C.; Ventola P.; Duncan J.S.: Combining phenotypic and resting-state fMRI data for autism classification with recurrent neural networks. In: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018. https://doi.org/10.1109/ISBI.2018.8363676

  26. Ledberg, A.; Fransson, P.; Larsson, J.; Petersson, K.M.: A 4D approach to the analysis of functional brain images: application to FMRI data. Human Brain Map. 13, 185–98 (2001). https://doi.org/10.1002/hbm.1032

    Article  CAS  Google Scholar 

  27. Khaled A.; Althelaya, El-Alfy, E.-S.M.; Mohammed, S.: Evaluation of bidirectional LSTM for short-and long-term stock market prediction. In: 9th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 3–5 April 2018. https://doi.org/10.1109/IACS.2018.8355458

  28. Dvornek N.C.; Ventola P.; Pelphrey K.A.; Duncan J.S.: Identifying Autism from Resting-State fMRI using long short-term memory networks. Machine learning in medical imaging. MLMI 10541 LNCS, pp. 362–370 (2017). https://doi.org/10.1007/978-3-319-67389-9_42

  29. Liu Y.; Qu H.Q.; Chang X.; Nguyen K.; Qu J.; Tian L.; Glessner J.; Sleiman P.M.; Hakonarson H. : Deep learning prediction of attention-deficit hyperactivity disorder in African Americans by copy number variation. Exp. Biol. Med. (2021). https://doi.org/0.1177/115353702211018970

  30. Tang, C.; Wei, Y.; Zhao, J.; Zhang, X.; Nie, J.: Abnormal brain activity in ADHD: a study of resting-state fMRI: brain informatics. BI 2017. Lecture Notes in Computer Science, vol. 10654. https://doi.org/10.1007/978-3-319-70772-3_17

  31. Graves, A.; Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18, 602–610 (2005). https://doi.org/10.1016/j.neunet.2005.06.042

    Article  PubMed  Google Scholar 

  32. Harshman, R.A.; Lundy, M.E.: PARAFAC: parallel factor analysis. Comput. Stat. Data Anal. 18, 39–72 (1994). https://doi.org/10.1016/0167-9473(94)90132-5

    Article  Google Scholar 

  33. Bro, R.: PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 38, 149–171 (1997). https://doi.org/10.1016/S0169-7439(97)00032-4

  34. Burdick, D.S.: An introduction to tensor products with applications to multiway data analysis. Chemom. Intell. Lab. Syst. 28, 229–237 (1995). https://doi.org/10.1016/0169-7439(95)80060-M

  35. Guo, Y.; Pagnoni, G.: A unified framework for group independent component analysis for multi-subject fMRI data. NeuroImage 42, 1078–93 (2008). https://doi.org/10.1016/j.neuroimage.2008.05.008

    Article  PubMed  Google Scholar 

  36. Davio, M.: Kronecker products and shuffle algebra. IEEE Trans. Comput. C–30, 116–125 (1981). https://doi.org/10.1109/TC.1981.6312174

  37. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J.: LSTM: A search space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28, 2222–2232 (2017). https://doi.org/10.1109/TNNLS.2016.2582924

    Article  MathSciNet  PubMed  Google Scholar 

  38. Schuster, M.; Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45, 2673–2681 (1997). https://doi.org/10.1109/78.650093

    Article  ADS  Google Scholar 

  39. Goodfellow, I.; Bengio, Y.; Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  40. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. arxiv:1207.0580 (2012)

  41. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014). https://doi.org/10.5555/2627435.2670313

    Article  MathSciNet  Google Scholar 

  42. Kim, B.H.; Choi, H.: Controlled dropout: a different approach to using dropout on deep neural network. In: IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Korea (South), pp. 13–16 (2017). https://doi.org/10.1109/BIGCOMP.2017.7881693

  43. Friston, K.J.; Holmes, A.P.; Poline, J.B.; Grasby, P.J.; Williams, S.C.; Frackowiak, R.S.; Turner, R.: Analysis of functional MRI time-series. Human. Brain Mapp. 1, 153–171 (1994). https://doi.org/10.1002/hbm.460010207

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhanshu Saurabh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saurabh, S., Gupta, P.K. Deep Learning-Based Modified Bidirectional LSTM Network for Classification of ADHD Disorder. Arab J Sci Eng 49, 3009–3026 (2024). https://doi.org/10.1007/s13369-023-07786-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07786-w

Keywords

Navigation