Skip to main content

Advertisement

Log in

IFEJM: New Intuitionistic Fuzzy Expert Judgment Method for Effort Estimation in Agile Software Development

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Many agile projects use expert judgment-based methods for estimating effort. Commonly, the judgments made during estimating project features are consensual. However, this will hardly be achieved when a conflict arises between estimators. Besides, estimate depends on the experience and skills of the estimator and could be threatened by his uncertainty to make reliable and accurate assessments. To fill these gaps, an intuitionistic fuzzy expert judgment method is proposed. The latter allows making fuzzified assessments and integrates estimators’ priorities according to a set of human factors. As well, it provides consensual estimates either by the end of the estimation rounds or automatically using an iterative algorithm. On the other hand, an initial empirical study has been conducted on an agile project in which user stories have been estimated by students and experts. The first findings have revealed that the proposal is more suitable for inexperienced estimators or in the first sprints of the project where disagreement is still significant. Nevertheless, when group agreement is increased during the estimating process, the proposal maintains a null bias toward the overestimation or the underestimation of the user stories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Idri, A.; Abnane, I.; Abran, A.: Support vector regression-based imputation in analogy-based software development effort estimation. J. Softw.: Evol. Process. 30(12), 1–23 (2018). https://doi.org/10.1002/smr.2114

    Article  Google Scholar 

  2. Schnitzhofer, F.; Schnitzhofer, P.: Pocket Estimator–A Commercial Solution to Provide Free Parametric Software Estimation Combining an Expert and a Learning Algorithm. In: 38th Euromicro Conference on Software Engineering and Advanced Applications. IEEE, pp. 422–425 (2012)

  3. Alves, R.; Valente, P.; Nunes, N.J.: Improving software effort estimation with human-centric models: a comparison of UCP and iUCP accuracy. In: 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems. Association for Computing Machinery, pp. 287–296 (2013)

  4. Molokken, K.; Jorgensen, M.: A review of surveys on software effort estimation. In: The International Symposium on Empirical Software Engineering, ISESE’3. IEEE, pp. 223–230 (2003)

  5. Moløkken-Østvold, K.; Jørgensen, M.; Tanilkan, SS.; Gallis, H.; Lien, AC.; Hove, SW.: A survey on software estimation in the Norwegian industry. In: 10th International Symposium on Software Metrics. IEEE, pp. 208–219 (2004)

  6. Trendowicz, A.; Münch, J.; Jeffery, R.: State of the practice in software effort estimation: a survey and literature review. In: Lecture Notes in Computer Science, pp. 232–245. Springer, Berlin, Heidelberg (2008)

  7. Usman, M.; Mendes, E.; Börstler, J.: Effort estimation in agile software development: a survey on the state of the practice. In: 19th International Conference on Evaluation and Assessment in Software Engineering, pp. 1–10 (2015)

  8. Coelho, E.; Basu, A.: Effort estimation in agile software development using story points. Int. J. Appl. Inf. Syst. 3(7) (2012)

  9. Beck, K.: Extreme programming. In: 29th International Conference on Technology of Object Oriented Languages and Systems. vol. 1. IEEE, pp. 411–411 (1999)

  10. Cohn, M.: Agile Estimating and Planning. Pearson Education (2005)

  11. Popli, R.; Chauhan, N.: Cost and effort estimation in agile software development. In: International Conference on Reliability Optimization and Information Technology (ICROIT). IEEE, pp. 57–61 (2014)

  12. Jørgensen, M.: The use of precision of software development effort estimates to communicate uncertainty. In: International Conference on Software Quality, pp. 156–168. Springer (2016)

  13. Moløkken-Østvold, K.; Jørgensen, M.: Group processes in software effort estimation. Empir. Softw. Eng. 9(4), 315–334 (2004). https://doi.org/10.1023/B:EMSE.0000039882.39206.5a

    Article  Google Scholar 

  14. Grimstad, S.; Jørgensen, M.: Inconsistency of expert judgment-based estimates of software development effort. J. Syst. Softw. 80(11), 1770–1777 (2007). https://doi.org/10.1016/j.jss.2007.03.001

    Article  Google Scholar 

  15. Jørgensen, M.: Practical guidelines for expert-judgment-based software effort estimation. IEEE Softw. 22(3), 57–63 (2005). https://doi.org/10.1109/MS.2005.73

    Article  Google Scholar 

  16. Jørgensen, M.; Boehm, B.; Rifkin, S.: Software development effort estimation: formal models or expert judgment? IEEE Softw. 26(2), 14–19 (2009). https://doi.org/10.1109/MS.2009.47

    Article  Google Scholar 

  17. Pedro, F.; Eduardo, M.: Expert Judgment in Software Estimation During the Bid Phase of a Project–An Exploratory Survey. In: 22nd Int Work on Software Measurement and the 7th Int Conf on Software Process and Product Measurementt. IEEE, pp. 126–131 (2012)

  18. Skitmore, M.; Lowe, D.: Human Factors in Estimating. Project cost estimating, pp. 91–100 (1995)

  19. Saaty, T.: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation: McGraw-Hill. Inc New York (1980)

  20. de F S M Russo, R.; Camanho, R.: Criteria in AHP: a systematic review of literature. Procedia Comput. Sci. 55, 1123–1132 (2015). 3rd International Conference on Information Technology and Quantitative Management, ITQM (2015). https://doi.org/10.1016/j.procs.2015.07.081

  21. Klaus-Rosińska, A.; Schneider, J.; Bulla, V.: Research project planning based on SCRUM framework and type-2 fuzzy numbers. In: International Conference on Information Systems Architecture and Technology, pp. 381–391. Springer (2018)

  22. Torrecilla-Salinas, C.J.; De Troyer, O.; Escalona, M.; Mejías, M.: A Delphi-based expert judgment method applied to the validation of a mature Agile framework for Web development projects. Inf. Technol. Manag. 20, 9–40 (2019). https://doi.org/10.1007/s10799-018-0290-7

    Article  Google Scholar 

  23. Miranda, E.; Bourque, P.; Abran, A.: Sizing user stories using paired comparisons. Inf. Softw. Technol. 51(9), 1327–1337 (2009). https://doi.org/10.1016/j.infsof.2009.04.003

    Article  Google Scholar 

  24. Rola, P.; Kuchta, D.: Application of fuzzy sets to the expert estimation of scrum-based projects. Symmetry. 11(8), 1032 (2019). https://doi.org/10.3390/sym11081032

    Article  ADS  Google Scholar 

  25. Sehra, S.K.; Brar, Y.S.; Kaur, N.: Applying fuzzy-AHP for software effort estimation in data scarcity. Int. J. Eng. Trends Technol. 45(1), 4–9 (2017)

    Article  Google Scholar 

  26. Atanassov, KT.: Intuitionistic fuzzy sets. In: Intuitionistic Fuzzy Sets. Studies in Fuzziness and Soft Computing. vol. 35, pp. 1–137. Physica, Heidelberg (1999)

  27. Boran, F.E.; Genç, S.; Kurt, M.; Akay, D.: A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 36(8), 11363–11368 (2009). https://doi.org/10.1016/j.eswa.2009.03.039

    Article  Google Scholar 

  28. Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE T Fuzzy Syst. 15(6), 1179–1187 (2007). https://doi.org/10.1109/TFUZZ.2006.890678

    Article  Google Scholar 

  29. Hung, W.L.; Yang, M.S.: On similarity measures between intuitionistic fuzzy sets. Int. J. Intell. Syst. 23(3), 364–383 (2008). https://doi.org/10.1002/int.20271

    Article  Google Scholar 

  30. Atanassov, KT.: Interval valued intuitionistic fuzzy sets. In: Intuitionistic Fuzzy Sets. Studies in Fuzziness and Soft Computing. vol. 35, pp. 139–177. Physica, Heidelberg (1999)

  31. Szmidt, E.; Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3), 505–518 (2000). https://doi.org/10.1016/S0165-0114(98)00244-9

    Article  MathSciNet  Google Scholar 

  32. Xu, Z.: Intuitionistic preference relations and their application in group decision making. Inf. Sci. 177(11), 2363–2379 (2007). https://doi.org/10.1016/j.ins.2006.12.019

    Article  MathSciNet  Google Scholar 

  33. Liao, H.; Xu, Z.: Priorities of intuitionistic fuzzy preference relation based on multiplicative consistency. IEEE T Fuzzy Syst. 22(6), 1669–1681 (2014). https://doi.org/10.1109/TFUZZ.2014.2302495

    Article  Google Scholar 

  34. Wan Sp, Xu.; Gl, Dong Jy: A novel method for group decision making with interval-valued Atanassov intuitionistic fuzzy preference relations. Inf. Sci. 372, 53–71 (2016). https://doi.org/10.1016/j.ins.2016.08.019

    Article  Google Scholar 

  35. Xu, G.; Wan, S.; Wang, F.; Dong, J.; Zeng, Y.: Mathematical programming methods for consistency and consensus in group decision making with intuitionistic fuzzy preference relations. Knowl. Based Syst. 98, 30–43 (2016). https://doi.org/10.1016/j.knosys.2015.12.007

    Article  Google Scholar 

  36. Chu, J.; Liu, X.; Wang, Y.; Chin, K.S.: A group decision making model considering both the additive consistency and group consensus of intuitionistic fuzzy preference relations. Comput. Ind. Eng. 101, 227–242 (2016). https://doi.org/10.1016/j.cie.2016.08.018

    Article  Google Scholar 

  37. Abdullah, L.; Jaafar, S.; Taib, I.: Intuitionistic fuzzy analytic hierarchy process approach in ranking of human capital indicators. Appl. Sci. 13(3), 423–429 (2013). https://doi.org/10.3923/jas.2013.423.429

    Article  Google Scholar 

  38. Xu, Z.; Liao, H.: Intuitionistic fuzzy analytic hierarchy process. IEEE T Fuzzy Syst. 22(4), 749–761 (2013). https://doi.org/10.1109/TFUZZ.2013.2272585

    Article  Google Scholar 

  39. Nirmala, G.; Uthra, G.: Intuitionistic fuzzy analytic hierarchy process based on possibility degree. Int. J. Pure Appl. Math. 109(9), 184–192 (2016)

    Google Scholar 

  40. Horowitz, I.L.: Consensus, conflict and cooperation: a sociological inventory. Soc. Forces 41(2), 177–188 (1962). https://doi.org/10.2307/2573609

    Article  Google Scholar 

  41. Bezdek, J.C.; Spillman, B.; Spillman, R.: A fuzzy relation space for group decision theory. Fuzzy Sets Syst. 1(4), 255–268 (1978). https://doi.org/10.1016/0165-0114(78)90017-9

    Article  MathSciNet  Google Scholar 

  42. Rothstein, A.; Butler, C.T.: On Conflict and Consensus: A Handbook on Formal Consensus Decisionmaking. Food Not Bombs Publishing, Portland (1987)

    Google Scholar 

  43. Wilson, K.J.: An investigation of dependence in expert judgement studies with multiple experts. Int. J. Forecast. 33(1), 325–336 (2017). https://doi.org/10.1016/j.ijforecast.2015.11.014

    Article  Google Scholar 

  44. Dalkey, N.; Helmer, O.: An experimental application of the Delphi method to the use of experts. Manag. Sci. 9(3), 458–467 (1963). https://doi.org/10.1287/mnsc.9.3.458

    Article  Google Scholar 

  45. Boehm, B.W.: Software engineering economics. IEEE Trans. Softw. Eng. SE–10(1), 4–21 (1984). https://doi.org/10.1109/TSE.1984.5010193

    Article  Google Scholar 

  46. Grenning, J.: Planning poker or how to avoid analysis paralysis while release planning. Hawthorn Woods: Renaissance Software Consulting. 3, 22–23 (2002)

    Google Scholar 

  47. Weber, E.U.: From subjective probabilities to decision weights: the effect of asymmetric loss functions on the evaluation of uncertain outcomes and events. Psychol. Bull. 115(2), 228–242 (1994). https://doi.org/10.1037/0033-2909.115.2.228

    Article  Google Scholar 

  48. Maximini, D.: The Scrum Culture. Springer, Cham (2015)

  49. Gandomani, TJ.; Faraji, H.; Radnejad, M.: Planning Poker in cost estimation in Agile methods: Averaging vs. Consensus. In: 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI). IEEE, pp. 066–071 (2019)

  50. Cohn, M.: Mountain Goat Software. Accessed 11 April (2022). https://www.mountaingoatsoftware.com/blog/dont-average-during-planning-poker.

  51. Szmidt, E.; Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 118(3), 467–477 (2001). https://doi.org/10.1016/S0165-0114(98)00402-3

    Article  MathSciNet  Google Scholar 

  52. Szmidt, E.; Kacprzyk, J.: Evaluation of agreement in a group of experts via distances between intuitionistic fuzzy preferences. In: 1st Int Symposium Intelligent Systems. vol. 1. IEEE, pp. 166–170 (2002)

  53. Liu, P.; Jin, F.: A multi-attribute group decision-making method based on weighted geometric aggregation operators of interval-valued trapezoidal fuzzy numbers. Appl. Math. Model. 36(6), 2498–2509 (2012). https://doi.org/10.1016/j.apm.2011.09.006

    Article  MathSciNet  Google Scholar 

  54. Zhang, X.; Xu, Z.: Soft computing based on maximizing consensus and fuzzy TOPSIS approach to interval-valued intuitionistic fuzzy group decision making. Appl. Soft Comput. 26, 42–56 (2015). https://doi.org/10.1016/j.asoc.2014.08.073

    Article  Google Scholar 

  55. Usman, M.; Mendes, E.; Weidt, F.; Britto, R.: Effort estimation in agile software development: a systematic literature review. In: 10th International Conference on Predictive Models in Software Engineering, pp. 82–91 (2014)

  56. Stupar, M.; Milošević, P.; Petrović, B.: A fuzzy logic-based system for enhancing scrum method. Management 22(1), 47–57 (2017). https://doi.org/10.7595/management.fon.2017.0007

    Article  Google Scholar 

  57. Boehm, BWea.: Software Cost Estimation with COCOMO II. Prentice Hall Upper Saddle River, NJ (2000)

  58. Karner, G.: Resource estimation for objectory projects. Object. Syst. SF AB 17(1), 1–9 (1993)

    Google Scholar 

  59. Miller, G.A.: The Magical Number Seven, Plus-or-Minus Two, Some Limits to Our Capacity for Processing Information, pp. 175–200. Brain Physiology and Psychology Buttenvorths, London (1967)

    Google Scholar 

  60. Xia, M.; Xu, Z.; Liao, H.: Preference relations based on intuitionistic multiplicative information. IEEE T Fuzzy Syst. 21(1), 113–133 (2012). https://doi.org/10.1109/TFUZZ.2012.2202907

    Article  Google Scholar 

  61. Dalton, J.: Backlog Grooming. In: Great Big Agile. Apress, Berkeley, pp. 129–131 (2019)

  62. Manifesto, A.: Values and Principles. Accessed 01 March (2022). https://agilemanifesto.org/

  63. Xu, Z.: An automatic approach to reaching consensus in multiple attribute group decision making. Comput. Ind. Eng. 56(4), 1369–1374 (2009). https://doi.org/10.1016/j.cie.2008.08.013

    Article  Google Scholar 

  64. Bai, Zy.: An interval-valued intuitionistic fuzzy TOPSIS method based on an improved score function. Sci. World J. (2013). https://doi.org/10.1155/2013/879089

  65. Aikhuele D.; Turan F. : An integrated fuzzy dephi and interval-valued intuitionistic fuzzy M-Topsis model for design concept selection. Pak. J. Stat. Oper. Res. (2017). https://doi.org/10.18187/pjsor.v13i2.1413

  66. Wu, J.; Chiclana, F.: Non-dominance and attitudinal prioritisation methods for intuitionistic and interval-valued intuitionistic fuzzy preference relations. Expert Syst. Appl. 39(18), 13409–13416 (2012). https://doi.org/10.1016/j.eswa.2012.05.062

  67. López-Martínez, J.; Ramírez-Noriega, A.; Juárez-Ramírez, R.; Licea, G.; Jiménez, S.: User stories complexity estimation using Bayesian networks for inexperienced developers. Cluster Comput. 21(1), 715–728 (2018). https://doi.org/10.1007/s10586-017-0996-z

    Article  Google Scholar 

  68. Mahnič, V.; Hovelja, T.: On using planning poker for estimating user stories. J. Syst. Softw. 85(9), 2086–2095 (2012). https://doi.org/10.1016/j.jss.2012.04.005

    Article  Google Scholar 

  69. Jørgensen, M.: A critique of how we measure and interpret the accuracy of software development effort estimation. In: 1st International Workshop on Software Productivity Analysis and Cost Estimation. Information Processing Society of Japan (2007)

  70. Foss, T.; Stensrud, E.; Kitchenham, B.; Myrtveit, I.: A simulation study of the model evaluation criterion MMRE. IEEE Trans. Softw. Eng. 29(11), 985–995 (2003). https://doi.org/10.1109/TSE.2003.1245300

    Article  Google Scholar 

  71. Kitchenham, B.A.; Pickard, L.M.; MacDonell, S.G.; Shepperd, M.J.: What accuracy statistics really measure. IEE Proc. Softw. 148(3), 81–85 (2001). https://doi.org/10.1049/ip-sen:20010506

    Article  Google Scholar 

  72. Usman, M.; Petersen, K.; Börstler, J.; Neto, P.S.: Developing and using checklists to improve software effort estimation: a multi-case study. J. Syst. Softw. 146, 286–309 (2018). https://doi.org/10.1016/j.jss.2018.09.054

  73. Moløkken-Østvold, K.; Haugen, N.C.; Benestad, H.C.: Using planning poker for combining expert estimates in software projects. J. Syst. Softw. 81(12), 2106–2117 (2008). https://doi.org/10.1016/j.jss.2008.03.058

    Article  Google Scholar 

  74. Rardin, R.L.; Rardin, R.L.: Optimization in Operations Research, vol. 166. Prentice Hall, Upper Saddle River, NJ (1998)

    Google Scholar 

Download references

Funding

No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar El Beggar.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Appendices

Appendix A: All Individual Estimates Are Identical

Proof

Replacing all \(\mu _i^{(l)}\) by \(\mu _i^{(1)}\) and all \(\nu _i^{(l)}\) by \(\nu _i^{(1)}\) in Eq. (13), we have:

$$\begin{aligned} (\mu _i^*,\nu _i^*)= & {} IFWA_\lambda \left( {\tilde{e}}_i^{(1)},{\tilde{e}}_i^{(2)},\cdots ,{\tilde{e}}_i^{(m)}\right) \\= & {} \left( 1-(1-\mu _i^{(1)})^{\sum _{l=1}^{m} \lambda _l},(\nu _i^{(1)})^{\sum _{l=1}^{m} \lambda _l}\right) \end{aligned}$$

Since \(\sum _{l=1}^{m} \lambda _l =1\), consequently

$$\begin{aligned}(\mu _i^*,\nu _i^*)\!=\!(\mu _i^{(1)},\nu _i^{(1)})\!=\!(\mu _i^{(2)},\nu _i^{(2)}) \!=\!\cdots \!=\!(\mu _i^{(m)},\nu _i^{(m)})\end{aligned}$$

\(\square \)

Appendix B: Proof of Equation (20)

Proof

By differentiating the Lagrangian function in Eq. 19, we can get the derivatives:

$$\begin{aligned}{\left\{ \begin{array}{ll} \frac{\partial L(c_i,\xi )}{\partial c_i}=2c_i \displaystyle \sum _{l=1}^{m}d_l({\tilde{e}}_i^*,{\tilde{e}}_i^{(l)} )-2\xi \\ \frac{\partial L(c_i,\xi )}{\partial \xi }=\displaystyle \sum _{u_i\in D}c_i -1 \end{array}\right. }\end{aligned}$$

According to the Lagrange multiplier method [74], the stationary points of \(L(c_i,\xi )\) could be found by setting the above derivatives to zero: \(\frac{\partial L(c_i,\xi )}{\partial c_i}=\frac{\partial L(c_i,\xi )}{\partial \xi }=0\). We obtain afterward the following equations:

$$\begin{aligned}{} & {} c_i \sum _{l=1}^{m}d_l({\tilde{e}}_i^{*},{\tilde{e}}_i^{(l)} )-\xi =0 \end{aligned}$$
(B1)
$$\begin{aligned}{} & {} \sum _{u_i\in D}c_i -1 =0 \end{aligned}$$
(B2)

Using Eq. (B1), we have:

$$\begin{aligned} c_i=\frac{\xi }{\displaystyle \sum _{l=1}^{m}d_l({\tilde{e}}_i^*,{\tilde{e}}_i^{(l)})} \end{aligned}$$

By replacing \(c_i\) in Eq. (B2), we have:

$$\begin{aligned} \displaystyle \sum _{u_i \in D}\frac{\xi }{\sum _{l=1}^{m}d_l({\tilde{e}}_i^*,{\tilde{e}}_i^{(l)})} =1 \end{aligned}$$

so that

$$\begin{aligned} \xi = \frac{1}{\displaystyle \sum _{u_i \in D}\frac{1}{\sum _{l=1}^{m} d_l({\tilde{e}}_i^*,{\tilde{e}}_i^{(l)})}} \end{aligned}$$

Therefore, the coefficients of adjustment are obtained as follows:

$$\begin{aligned} c_i=\frac{\frac{\displaystyle 1}{\displaystyle \sum _{l=1}^{m}d_l({\tilde{e}}_i^{*},{\tilde{e}}_i^{(l)} )}}{\displaystyle \sum _{u_i\in D}\frac{1}{\displaystyle \sum _{l=1}^{m}d_l({\tilde{e}}_i^{*},{\tilde{e}}_i^{(l)} )}} \end{aligned}$$
(B3)

On the other hand, the Hessian matrix of Lagrangian function:

$$\begin{aligned} H=\frac{\partial ^2 L(c_i )}{\partial c_i\partial c_j} \end{aligned}$$

where

$$\begin{aligned} \frac{\partial ^2 L(c_i )}{\partial c_i\partial c_j}=0 \, for \,i\ne j\end{aligned}$$

and

$$\begin{aligned}\frac{\partial ^2 L(c_i )}{\partial c_i\partial c_j}=2 \sum _{l=1}^{m}d_l({\tilde{e}}_i^*,{\tilde{e}}_i^{(l)}) \end{aligned}$$

The eigenvalues of H are \(2 \sum _{l=1}^{m}d_l({\tilde{e}}_i^*,{\tilde{e}}_i^{(l)})\) greater than 0. According to [74], H is positive definite. Thereby, \(c_i\) is a strict local minimum. \(\square \)

Appendix C: Proof of Theorem 1

Proof

Using Eq. (17), we consider \(\mu _i^{(l,j)}\) as a sequence:

$$\begin{aligned} \mu _i^{(l,j+1)} = c_i\mu _i^{(l,j)}+(1-c_i)\mu _i^{*(j)} \end{aligned}$$
(C4)

Based on the monotonic sequence theorem, every bounded, monotonic sequence converges. First, we demonstrate that \(\mu _i^{(l,j)}\) is a bounded sequence, i.e., \(0 \le \mu _i^{(l,j)}\le 1\) for all \(j\in {\mathbb {N}}\). By definition \(\mu _i^{(l,1)}\) is a membership function, and hence, \(0\le \mu _i^{(l,1)}\le 1\). Using the principle of mathematical induction, we suppose that \(0 \le \mu _i^{(l,j)}\le 1\) is true and we will prove that \(0 \le \mu _i^{(l,j+1)}\le 1\) is also true. Indeed, by substituting the term j by j-1 in Eq. (C4), then we have:

$$\begin{aligned}\mu _i^{(l,j+1)}\!=\!c_i\left( \!c_i \mu _i^{(l,j-1)}\!+(1\!-\!c_i) \mu _i^{*(j-1)}\!\right) +(1-c_i) \mu _i^{*(j)} \end{aligned}$$

so that

$$\begin{aligned} \mu _i^{(l,j+1)}=c_i^2 \mu _i^{(l,j-1)}+c_i(1-c_i) \mu _i^{*(j-1)}+(1-c_i) \mu _i^{*(j)} \end{aligned}$$

Next, by substituting the term j-1 by j-2, we have:

$$\begin{aligned} \mu _i^{(l,j+1)}=&\, c_i^2\left( c_i \mu _i^{(l,j-2)}+(1-c_i) \mu _i^{*(j-2)}\right) \\ {}&+c_i (1-c_i) \mu _i^{*(j-1)}+(1-c_i) \mu _i^{*(j)} \end{aligned}$$

So on, we continue substituting until the first term. We obtain afterward:

$$\begin{aligned} \mu _i^{(l,j+1)}\!=&\,c_i^j \mu _i^{(l,1)}\!+\!c_i^{j-1}(1\!-\!c_i) \mu _i^{*(1)}\!+\!c_i^{j-2}(1\!-\!c_i)\mu _i^{*(2)}\\&+\cdots +c_i (1\!-\!c_i) \mu _i^{*(j-1)}+(1\!-\!c_i) \mu _i^{*(j)} \end{aligned}$$

Accordingly, we write:

$$\begin{aligned} \mu _i^{(l,j+1)} = c_i^{j}\mu _i^{(l,1)}+(1-c_i) \sum _{k=0}^{j-1}c_i^{k} \mu _i^{*(j-k)} \end{aligned}$$
(C5)

Obviously, \(\mu _i^{(l,j+1)}\!\ge \!0\) since \(0\!\le \!\mu _i^{(l,1)}\!\le \!1\), \(0\!<\!c_i\!<1\!\), and \(0\!\le \!\mu _i^{*(j)}\!\le \! 1\) for all \(j\in {\mathbb {N}}\).

Furthermore, from Eq. (C5) we have:

\(\mu _i^{(l,j+1)}\!\le \! c_i^j \mu _i^{(l,1)}\!+\!(1\!-\!c_i) \displaystyle \!\sum _{k=0}^{j-1}\!c_i^k\) and \(\displaystyle \sum _{k=0}^{j-1}c_i^k\!=\!\frac{(1\!-\!c_i^j)}{(1\!-\!c_i)}\).

This implies \(\displaystyle \mu _i^{(l,j+1)}\le c_i^j \mu _i^{(l,1)}+(1-c_i)\frac{(1-c_i^j)}{(1-c_i)}\) and \(\displaystyle \mu _i^{(l,j+1)}\le c_i^j \mu _i^{(l,1)}+1-c_i^j\),

i.e., \(\displaystyle \mu _i^{(l,j+1)}\le c_i^j (\mu _i^{(l,1)}-1)+1\), since \(0\le c_i^j \le 1\) and \(\mu _i^{(l,1)}\le \!1\! \Rightarrow c_i^j (\mu _i^{(l,1)}-1)\!\le \! 0\). Hence, \(0\!\le \! \mu _i^{(l,j+1)}\!\le \! 1\).

The first property of Theorem 1 is thus verified. \(\mu _i^{(l,j)}\) is a bounded sequence.

Next, we demonstrate that \(\mu _i^{(l,j)}\) is a monotonic sequence. We can see that \(\mu _i^{(l,j)}\) is a recursive sequence that could be denoted as:

$$\begin{aligned} \mu _i^{(l,j+1)}=f(\mu _i^{(l,j)}), where f:[0,1]\longrightarrow [0,1] \end{aligned}$$

and

$$\begin{aligned} f(x)=c_i x+(1-c_i)\!\left( 1-(\!1-x)^{\lambda _l}\!\!\!\!\!\!\prod _{l^{'}=1,l^{'} \ne l}^{m}\!\!\!\!(1-\mu _i^{(l^{'},j) } )^{\lambda _{l^{'}}}\!\!\right) \nonumber \\ \end{aligned}$$
(C6)

To simplify the recursion function, we set

\(p=\displaystyle \prod _{l^{'}=1,l^{'} \ne l}^{m}(1-\mu _i^{(l^{'},j) } )^{\lambda _{l^{'}}}\) where \(p \in [0,1]\). Then, the function f(x) in Eq. (C6) could be written as:

$$\begin{aligned} f(x)=c_ix-(1-c_i )p(1-x)^{\lambda _l}+(1-c_i) \end{aligned}$$
(C7)

Next, we derive f(x)

$$\begin{aligned} \frac{\partial f(x)}{\partial x}=c_i+\lambda _l(1-c_i)p \end{aligned}$$
(C8)

Since \(c_i> 0\) and \(\lambda _l,p \in [0,1]\), we have: \(\frac{\partial f(x)}{\partial x}>0\) for every \(x\in [0,1]\). We deduce that f(x) is a strictly increasing function, and consequently, \(\mu _i^{(l,j)}\) is a monotonic (increasing or decreasing) sequence. Its monotonicity depends on the sign of \(\mu _i^{(l,2)}-\mu _i^{(l,1)}\). If \(\mu _i^{(l,2)}-\mu _i^{(l,1)}>0\), then \(\mu _i^{(l,j)}\) is a strictly increasing sequence. Otherwise, \(\mu _i^{(l,j)}\) is a strictly decreasing sequence. From above, we proved that \(\mu _i^{(l,j)}\) is a bounded monotonic sequence, and therefore, it converges. Now, it remains only to find its limit.

Based on the theorem of the fixed point: A fixed point l of a continuous recursion function f(x), which satisfies \(f(l)=l\) and \(\vert \frac{\partial f(x)}{\partial x}\vert <1\), is unique and limit of the recursive sequence expressed by f(x). By using Eq. (C7), we have:

$$\begin{aligned} f(\mu _i^{*(n_0)})=c_i \mu _i^{*(n_0)}-(1-c_i)p(1-\mu _i^{*(n_0)})^{\lambda _l}+(1-c_i) \end{aligned}$$

We have also: \(p(1-\mu _i^{*(n_0)})^{\lambda _l}\!=\!\displaystyle \prod _{l=1}^m(1-\mu _i^{(l,n_0)})^{\lambda _l}\). Thereby

$$\begin{aligned} f(\mu _i^{*(n_0)})&\!=\!c_i \mu _i^{*(n_0)}\!-\!(1\!-\!c_i) \displaystyle \!\prod _{l=1}^{m}(1\!-\!\mu _i^{(l,n_0)})^{\lambda _l}\!+\!(1\!-\!c_i)\nonumber \\&\!=\!c_i \mu _i^{*(n_0)}+(1-c_i)(1-\displaystyle \prod _{l=1}^{m}(1-\mu _i^{(l,n_0)})^{\lambda _l})\nonumber \\&\!=\!c_i \mu _i^{*(n_0)}+(1-c_i) \mu _i^{*(n_0)}\nonumber \end{aligned}$$

We find that \(f(\mu _i^{*(n_0)})=\mu _i^{*(n_0)}\). This means that \(\mu ^{*(n_0)}\) is a fixed point of f(x). From Eq. (C8), by applying the triangular inequality, we have:

$$\begin{aligned} \vert \frac{\partial f(x)}{\partial x}\vert \le \vert c_i \vert + \lambda _l p\vert 1-c_i\vert <\vert c_i\vert +\vert 1-c_i \vert \end{aligned}$$

Since the only case that \(\lambda _l p\vert 1-c_i\vert =\vert 1-c_i\vert \) is when \(p=1\) and \(\lambda _l=1\), which is absurd because if we admit that \(\lambda _l=1\), then p=0. This means that \(\vert \frac{\partial f(x)}{\partial x}\vert \le 1\). Now, recall that since f(x) is differentiable on the interval [0,1], then it is certainly continuous on this interval. From above, we proved that \(\mu _i^{*(n_0)}\) is a unique fixed point of the continue function f(x) and furthermore the limit of its corresponding recursive sequence \(\mu _i^{(l,j)}\). Hence, we can write:

$$\begin{aligned} \lim _{j\rightarrow +\infty }\mu _i^{(l,j)}=\mu _i^{*(n_0)} \end{aligned}$$

Likewise, we can demonstrate \(\nu _i^{(l,j)}\) is a convergent sequence with

$$\begin{aligned} \lim _{j\rightarrow +\infty } \nu _i^{(l,j)}=\nu _i^{*(n_0)} \end{aligned}$$

This completes the proof of Theorem  1. Obviously, Theorem 1 is still valid despite the set D contains only one user story, simply we have to replace \(c_i\) by \(\lambda _l\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Beggar, O. IFEJM: New Intuitionistic Fuzzy Expert Judgment Method for Effort Estimation in Agile Software Development. Arab J Sci Eng 49, 2887–2908 (2024). https://doi.org/10.1007/s13369-023-07711-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07711-1

Keywords

Navigation