Skip to main content
Log in

Outcomes of Partial Slip on Double-Diffusive Convection on Peristaltic Waves of Johnson–Segalman Nanofluids Under the Impact of Inclined Magnetic Field

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The outcomes of partial slip on double-diffusive convection of Johnson–Segalman nanofluids in an asymmetric peristaltic path are presented in this research with the effect of inclined magnetic field. The mathematical formulation of Johnson–Segalman nanofluids is also discussed with double-diffusive convection and inclined magnetic field. To simplify extremely nonlinear partial differential equations, a lubricant approach is applied. The numerical calculations are obtained to the equations for the stream function, concentration, pressure gradient, temperature, velocity, nanoparticle volume fraction, and pressure rise. The impact of prominent hydro-mechanical parameters such as Brownian motion, thermophoresis, Soret, Dufour, and slip constraints on the axial velocity, trapping, volumetric fraction, pressure gradient, temperature, pressure rise, and concentration functions is evaluated graphically. It is noted that slip effect in the channel causes the fluid particles to stray, slowing the fluid velocity. Moreover, it has been noted that as thermophoretic effects and Brownian motion increase, nanoparticles rapidly move from the wall into the fluid, significantly raising temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

C :

Solutal concentration

T :

Temperature

G rF :

Grashof number of nanoparticles

\(\Omega\) :

Nanoparticle volume fraction

\(D_{B}\) :

Brownian diffusion coefficient

Re:

Reynolds number

\(D_{s}\) :

Solutal diffusively

\(N_{t}\) :

Thermophoresis parameter

\(\left( {\rho c} \right)_{f}\) :

Heat capacity of fluid

\(N_{CT}\) :

Soret parameter

\(G_{rc}\) :

Solutal Grashof number

\(M\) :

Hartmann number

Pr:

Prandtl number

\(Le\) :

Lewis number

\(N_{b}\) :

Brownian motion parameter

\(D_{T}\) :

Thermophoretic diffusion coefficient

\(G_{rt}\) :

Thermal Grashof number

\(N_{TC}\) :

Dufour parameter

\(Ln\) :

Nanofluid Lewis number

\(\left( {\rho c} \right)_{p}\) :

Heat capacity of nanoparticle

\(D_{TC}\) :

Dufour diffusively

\(D_{CT}\) :

Soret diffusively

\(u\) :

Axial velocity

\(g\) :

Acceleration due to gravity

\(d_{1} ,d_{3}\) :

Channel width

\(k\) :

Thermal conductivity

\(d_{2} , d_{4}\) :

Wave amplitudes

\({\text{v}}\) :

Transverse velocity

\(b\) :

Wave amplitude

\(p\) :

Pressure

\(t\) :

Time

\(c\) :

Propagation of velocity

\(\delta\) :

Wavelength

\(\rho_{p}\) :

Nanoparticle mass density

\(\gamma\) :

Solutal concentration

\(\beta_{T}\) :

Volumetric coefficient of thermal expansion

\(\omega_{3}\) :

Concentration slip parameter

\(\omega_{1}\) :

Velocity slip parameter

\(\delta\) :

Wave number

\(\Psi\) :

Stream function

\(\left( {\rho c} \right)_{p}\) :

Nanoparticle heat capacity

\(\Gamma\) :

Magnetic field inclination angle

\(\beta_{C}\) :

Volumetric coefficient of solutal expansion

\(\omega_{4}\) :

Nanoparticles slip parameter

\(\omega_{2}\) :

Temperature slip parameter

\(\Theta\) :

Temperature

References

  1. Bertuzzi, A.; Mancinelli, R.; Pescatori, M.; Salinari, S.; Ghista, D.N.: Models of gastrointestinal tract motility. In: Kline, J. (Ed.) Hand Book of Biomedical Engineering, pp. 637–654. Academic Press, London, UK (1988)

    Chapter  Google Scholar 

  2. J. N. J. Lozano, Peristaltic flow with application to ureteral biomechanics, Ph.D. thesis, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Ind, USA

  3. Quillin, K.J.: Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris. J. Exp. Biol. 202, 661–674 (1999)

    Article  Google Scholar 

  4. Saga, N.; Nakamura, T.: Development of a peristaltic crawling robot using magnetic fluid on the basis of the locomotion mechanism of the earthworm. Smart Mater. Struct. 13, 566–569 (2004)

    Article  Google Scholar 

  5. T. W. Latham, Fluid motion in a peristaltic pump, M.Sc. Thesis, MIT, Cambridge, 1966.

  6. Jaffrin, M.Y.; Shapiro, A.H.: Peristaltic pumping. Annu. Rev. Fluid Mech. 3, 13–37 (1971)

    Article  Google Scholar 

  7. Burns, J.C.; Parkes, J.: Peristaltic motion. J. Fluid Mech. 29, 731–743 (1967)

    Article  Google Scholar 

  8. Chow, T.S.: Peristaltic transport in a circular cylindrical pipe. J. Appl. Mech. 37, 901–906 (1970)

    Article  MATH  Google Scholar 

  9. Mishra, M.; Rao, A.R.: Peristaltic transport of a Newtonian fluid in an asymmetric channel. Zeitschrift fur angewandte Mathematik and Physik 54, 532–550 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L.: Peristaltic pumping with long wavelengths at low Reynolds number. Cambridge University Press 37, 799–825 (1969)

    Google Scholar 

  11. Takabatake, S.; Ayukawa, K.: Numerical study of two-dimensional peristaltic flows. J. Fluid Mech. 122, 439–465 (1982)

    Article  MATH  Google Scholar 

  12. Johnson, M.W., Jr.; Segalman, D.: A model for viscoelastic fluid behavior which allows non-affine deformation. J. Nonnewton. Fluid Mech. 2, 255–270 (1977)

    Article  MATH  Google Scholar 

  13. Malkus, D.S.; Nohel, J.A.; Plohr, B.J.: Dynamics of shear flows of non-Newtonian fluids. J. Comput. Phys. 87, 464–497 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vinogardov, G.V.; Malkin, A.Y.; Yanovskii, G.Y.; Borisenkova, E.K.; Yarlykov, B.V.; Brezhnava, G.V.: Viscoelastic properties and flow of narrow distribution polybutadienes and polyisopropenes. J. Polym. Sci. Part A-2 10, 1061–1084 (1972)

    Article  Google Scholar 

  15. McLeish, T.C.B.; Ball, R.C.: A molecular approach to the spurt effect in polymer melt flow. J. Polym. Sci. (B) 24, 1765–1745 (1986)

    Google Scholar 

  16. Hayat, T.; Afsar, A.; Ali, N.: Peristaltic transport of a Johnson-Segalman fluid in an asymmetric channel. Math. Comput. Model. 47, 380–400 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kraynik, A.M.; Schowalter, W.R.: Slip at the wall and extrudate roughness with aqueous solutions of polyvinyl alcohol and sodium borate. J. Rheol. 25, 95–114 (1981)

    Article  Google Scholar 

  18. S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, (1995) 99–105 .

  19. S. Mosayebidorcheh, M. Hatami Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel, International Journal of Heat and Mass Transfer,

  20. Akram, S.; Afzal, Q.: Effects of thermal and concentration convection and induced magnetic field on peristaltic flow of Williamson nanofluid in inclined uniform channel. Eur. Phys. J. Plus 135, 857 (2020)

    Article  Google Scholar 

  21. Ellahi, R.; Zeeshan, A.; Hussain, F.; Asadollahi, A.: Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy. Symmetry 11, 276 (2019)

    Article  MATH  Google Scholar 

  22. Akram, S.; Nadeem, S.: Influence of nanoparticles phenomena on the peristaltic flow of pseudoplastic fluid in an inclined asymmetric channel with different wave forms. Iran. J. Chem. Chem. Eng. 36, 107–124 (2017)

    Google Scholar 

  23. Prakash, J.; Tripathi, D.; Triwari, A.K.; Sait, S.M.; Ellahi, R.: Peristaltic pumping of nanofluids through tapered channel in porous environment: Applications in blood flow. Symmetry 11, 868 (2019)

    Article  Google Scholar 

  24. Kayani, S.M.; Hina, S.; Mustafa, M.: A new model and analysis for peristalsis of Carreau-Yasuda (CY) nanofluid subject to wall properties. Arab. J. Sci. Eng. 45, 5179–5190 (2020)

    Article  Google Scholar 

  25. Akbar, N.S.; Nadeem, S.: Endoscopic effects on the peristaltic flow of a nanofluid. Commun. Theor. Phys. 56, 761–768 (2011)

    Article  MATH  Google Scholar 

  26. Bhatti, M.M.; Zeeshan, A.; Ellahi, R.: Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvasc. Res. 110, 32–42 (2017)

    Article  Google Scholar 

  27. Qasim, M.; Ali, Z.; Wakif, A.; Boulahia, Z.: Numerical simulation of MHD peristaltic flow with variable electrical conductivity and Joule dissipation using generalized quadrature method. Commun. Theor. Phys. 71, 509–518 (2019)

    Article  MathSciNet  Google Scholar 

  28. Ali, F.; Sheikh, N.A.; Khan, I.; Saqib, M.: Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: a fractional model. J. Magn. Magn. Mater. 423, 327–336 (2017)

    Article  Google Scholar 

  29. Tripathi, D.; Beg, O.: A study on peristaltic flow of nanofluids: application in drug delivery systems. Int. J. Heat Mass Transf. 70, 61–70 (2014)

    Article  Google Scholar 

  30. Sucharitha, G.; Vajravelu, K.; Lakshminarayana, P.: Magnetohydrodynamic nanofluid flow in a non-uniform aligned channel with Joule heating. J. Nanofluids 8, 1373 (2019)

    Article  Google Scholar 

  31. Kothandapani, M.; Prakash, J.: Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluid in a tapered asymmetric channel. Int. J. Heat Mass Transf. 81, 234–245 (2015)

    Article  Google Scholar 

  32. Reddy, M.G.; Makinde, O.D.: Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. J. Mol. Liq. 223, 1242–1248 (2016)

    Article  Google Scholar 

  33. Raza, M.; Ellahi, R.; Sait, S.M.; Sarafraz, M.M.; Shadloo, M.S.; Waheed, I.: Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J. Therm. Anal. Calorim. 140, 1277–1291 (2019)

    Article  Google Scholar 

  34. Akram, S.: Effects of nanofluid on peristaltic flow of a Carreau fluid model in an inclined magnetic field. Heat Transf. Asian Res. 43, 368–383 (2014)

    Article  Google Scholar 

  35. Raza, M.; Ellahi, R.; Sait, S.M.; Sarfaraz, M.M.; Shadloo, M.S.; Waheed, I.: Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J. Therm. Anal. Calorim. 140, 1277–1291 (2020)

    Article  Google Scholar 

  36. Hussain, S.; Jamal, M.; Haddad, Z.; Arc, M.: Numerical modeling of magnetohydrodynamic thermosolutal free convection of power law fluids in a staggered porous enclosure. Sustain. Energy Technol. Assess. 53, 102395 (2022)

    Google Scholar 

  37. Yldz, Ç.; Arc, M.; Karabay, H.: Effect of inclination angle on natural convection of nanofluids in a U-shaped cavity. Int. J. Environ. Sci. Technol. 16, 5289–5294 (2019)

    Article  Google Scholar 

  38. Ali, F.H.; Hamzah, H.K.; Egab, K.; Arc, M.; Shahsavar, A.: Non-Newtonian nanofluid natural convection in a U-shaped cavity under magnetic field. Int. J. Mech. Sci. 186, 105887 (2021)

    Article  Google Scholar 

  39. Al-Amir, Q.R.; Hamzah, H.K.; Ali, F.H.; Bayraktar, S.; Arc, M.; Hatami, M.: Comparison study of vertical and horizontal elastic wall on vented square enclosure filled by nanofluid and hexagonal shape with MHD effect. Eur. Phys. J. Special Top. 231, 2623–2643 (2022)

    Article  Google Scholar 

  40. Yldz, Ç.; Arc, M.; Karabay, H.; Bennacer, R.: Natural convection of nanofluid in a U-shaped enclosure emphasizing on the effect of cold rib dimensions. J. Therm. Anal. Calorim. 146, 801–811 (2021)

    Article  Google Scholar 

  41. Garimella, S.V.; Simpson, J.E.: Effect of thermo solutal convection on directional solidification. Sadhana 26, 121–136 (2001)

    Article  Google Scholar 

  42. Akbar, N.S.; Habib, M.B.: Peristaltic pumping with double diffusive natural convective nanofluid in a lopsided channel with accounting thermophoresis and Brownian moment. Microsyst. Technol. 25, 1217–1226 (2019)

    Article  Google Scholar 

  43. Sharma, A.; Tripathi, D.; Sharma, R.K.; Tiwari, A.K.: Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids. Physica A 535, 122148 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Anwar Bég, O.; Tripathi, D.: Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids a bio-nanoengineering model. Proc. Inst. Mech. Eng. Part N 225, 99–114 (2012)

    Google Scholar 

  45. Akram, S.; Afzal, Q.; Aly, E.H.: Half-breed effects of thermal and concentration convection of peristaltic pseudoplastic nanofluid in a tapered channel with induced magnetic field. Case Stud. Therm. Eng. 22, 100775 (2020)

    Article  Google Scholar 

  46. Alolaiyan, H.; Riaz, A.; Razaq, A.; Saleem, N.; Zeeshan, A.; Bhatti, M.M.: Effects of double diffusion convection on third grade nanofluid through a curved compliant peristaltic channel. Coatings 10(2), 154 (2020)

    Article  Google Scholar 

  47. Asha, S.K.; Sunitha, G.: Thermal radiation and hall effects on peristaltic blood flow with double diffusion in the presence of nanoparticles. Case Stud. Therm. Eng. 17, 100560 (2020)

    Article  Google Scholar 

  48. Akram, S.; Athar, M.; Saeed, K.: Hybrid impact of thermal and concentration convection on peristaltic pumping of Prandtl nanofluids in non-uniform inclined channel and magnetic field. Case Stud. Therm. Eng. 25, 100965 (2021)

    Article  Google Scholar 

  49. Riaz, A.; Khan, S.U.D.; Zeeshan, A.; Khan, S.U.; Hassan, M.; Muhammad, T.: Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium. J. Thermal Anal. Calorim. 143, 1997–2009 (2021)

    Article  Google Scholar 

  50. Ali, A.; Saleem, S.; Mumraiz, S.; Saleem, A.; Awais, M.; Khan Marwat, D.N.: Investigation on TiO2–Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffrey material. J. Therm. Anal. Calorim. 143, 1985–1996 (2021)

    Article  Google Scholar 

  51. Derek, C.; Tretheway, D.C.; Meinhart, C.D.: Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14, L9–L12 (2002)

    Article  Google Scholar 

  52. Akram, S.; Razia, A.; Afzal, F.: Effects of velocity second slip model and induced magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-diffusivity convection in nanofluids. Arch. Appl. Mech. 90, 1583–1603 (2020)

    Article  Google Scholar 

  53. Aly, E.H.; Ebaid, A.: Effect of the velocity second slip boundary condition on the peristaltic flow of nanofluids in an asymmetric channel: exact solution. Abstr. Appl. Anal. 2014, 191876 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Hina, S.: MHD peristaltic transport of Eyring–Powell fluid with heat/mass transfer, wall properties and slip conditions. J. Magn. Magn. Mater. 404, 148–158 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safia Akram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, K., Akram, S. & Ahmad, A. Outcomes of Partial Slip on Double-Diffusive Convection on Peristaltic Waves of Johnson–Segalman Nanofluids Under the Impact of Inclined Magnetic Field. Arab J Sci Eng 48, 15865–15881 (2023). https://doi.org/10.1007/s13369-023-07706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07706-y

Keywords

Navigation