Skip to main content

Advertisement

Log in

Takagi–Sugeno Fuzzy Logic Controller for DFIG Operating in the Stand-Alone Mode: Simulations and Experimental Investigation

  • Research Article--Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, an enhanced control scheme for doubly fed induction generators (DFIGs) operating in the standalone mode is proposed and experimentally validated. The intended aim is to regulate the amplitude and frequency of DFIG stator voltage profile, subjected to variations in the electrical load and rotor speed. For that, the excitation of DFIG is manipulated via rotor side converter (RSC), typically known as field-oriented control strategy fed by a hysteresis current controller. To reach the projected aim, a fuzzy logic controller (FLC) is implemented and systematically investigated. Compared to its counterpart Mamdani type, the fuzzy inference system (FIS) is based on Takagi–Sugeno (T–S) method, which is justified by comparatively lower computational burden and enhanced practical implementation. The advantages of the proposed T–S based FLC are highlighted by conducting a comprehensive comparison with the conventional PI controller and Mamdani type FLC. Both the simulations study and experimental verification are conducted under diverse scenarios: (i) a wide range of rotor speed, (ii) sudden variations in the electrical load, and (iii) step changes in the desired stator voltage profile. The simulation study and experimental analysis are, respectively, conducted via MATLAB/Simulink platform and dSPACE DS1104 platform. The results depict superior performance of proposed T–S type FLC scheme, when compared with the conventional PI controller. Moreover, based on experimental findings, the proposed scheme leverages 0.26 ms reduction in the computational time (vs Mamdani FLC), facilitating a superior practical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Akin, E.; Aya, M.; Karakose, M.: A robust integrator algorithm with genetic based fuzzy controller feedback for direct vector control. Comput. Electr. Eng. 29, 379–94 (2003). https://doi.org/10.1016/S0045-7906(01)00

    Article  MATH  Google Scholar 

  2. Elbouchikhi, E.; Feld, G.; Amirat, Y.; Benbouzid, M.; Le, Gall F.: Design and experimental implementation of wind energy a conversion platform with education and research capabilities. Comput. Electr. Eng. (2020). https://doi.org/10.1016/j.compeleceng;85.2020.106661

    Article  Google Scholar 

  3. Tamaarat, A.; Benakcha, A.: Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected variable speed wind energy conversion system. Front Energy 8, 371–378 (2014). https://doi.org/10.1007/s11708-014-0318-6

    Article  Google Scholar 

  4. Abdeddaim, S.; Betka, A.; Drid, S.; Becherif, M.: Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine. Energy Convers. Manag. 79, 281–288 (2014). https://doi.org/10.1016/j.enconman.2013.12.003

    Article  Google Scholar 

  5. Mahvash, H.; Taher, S.A.; Rahimi, M.; Shahidehpour, M.: DFIG performance improvement in grid connected mode by using fractional order [PI] controller. Int. J. Electr. Power Energy Syst. 96, 398–411 (2018). https://doi.org/10.1016/j.ijepes.2017.10.008

    Article  Google Scholar 

  6. El Azri, H.; Essadki, A.; Nasser, T.; LQR controller design for a nonlinear, doubly fed induction generator model. Proc 2018 6th Int Renew Sustain Energy Conf IRSEC 2018;5:1–6. (2018) https://doi.org/10.1109/IRSEC.2018.8702830.

  7. Alrifai, M.; Zribi, M.; Rayan, M.: Feedback linearization controller for a wind energy power system. Energies (2016). https://doi.org/10.3390/en9100771

    Article  Google Scholar 

  8. Mensou, S.; Essadki, A.; Nasser, T.; Idrissi, B.B.; Ben, T.L.: Dspace DS1104 implementation of a robust nonlinear controller applied for DFIG driven by wind turbine. Renew. Energy 147, 1759–1771 (2020). https://doi.org/10.1016/j.renene.2019.09.042

    Article  Google Scholar 

  9. Merabet, A.; Eshaft, H.; Tanvir, A.A.: Power-current controller based sliding mode control for DFIG-wind energy conversion system. IET Renew. Power Generat. (2018). https://doi.org/10.1049/iet-rpg.2017.0313

    Article  Google Scholar 

  10. Djilali, L.; Sanchez, E.N.; Belkheiri, M.: Real-time implementation of sliding-mode field-oriented control for a DFIG-based wind turbine. Int Trans. Electr. Energy Syst. (2018). https://doi.org/10.1002/etep.2539

    Article  Google Scholar 

  11. Kelkoul, B.; Boumediene, A.: Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for doubly fed induction generator (DFIG) under wind turbine. Energy 214, 118871 (2021). https://doi.org/10.1016/j.energy.2020.118871

    Article  Google Scholar 

  12. Abdeddaim, S.; Betka, A.; Charrouf, O.: Optimal tracking and second order sliding power control of the DFIG wind turbine. AIP Conf Proc;1814. (2017). https://doi.org/10.1063/1.4976267.

  13. Dieu Nguimfack-Ndongmo, J.; Kenné, G.; Nfah, E.M.: Design of nonlinear synergetic controller for transient stabilization enhancement of DFIG in multimachine wind power systems. Energy Procedia 93, 125–132 (2016). https://doi.org/10.1016/j.egypro.2016.07.160

    Article  Google Scholar 

  14. Khoete, S.; Manabe, Y.; Kurimoto, M.; Funabashi, T.; Kato, T.: Robust h-infmity control for DFIG to enhance transient stability during grid faults. Lect Notes Eng Comput Sci 2226, 725–730 (2016)

    Google Scholar 

  15. Li, P.; Wang, J.; Xiong, L.; Huang, S.; Ma, M.; Wang, Z.: Energy-shaping controller for DFIG-based wind farm to mitigate subsynchronous control interaction. IEEE Trans Power Syst 36, 2975–2991 (2021). https://doi.org/10.1109/TPWRS.2020.3048141

    Article  Google Scholar 

  16. Wang, J.; Peng, P.; Passivity-based control for doubly-fed induction generator with variable speed and constant frequency in wind power system. Electric, electronic and control engineering, ICEECE 2015. Phuket Island (Thailand): CRC Press; 2015. 5–6 March 2015.

  17. Taveiros, F.E.V.; Barros, L.S.; Costa, F.B.: Back-to-back converter state-feedback control of DFIG (doubly-fed induction generator)-based wind turbines. Energy 89, 896–906 (2015). https://doi.org/10.1016/j.energy.2015.06.027

    Article  Google Scholar 

  18. Abo-Khalil, A.G.; Alghamdi, A.; Tlili, I.; Eltamaly, A.M.: Current controller design for DFIG-based wind turbines using state feedback control. IET Renew. Power Gener. 13, 1938–1949 (2019). https://doi.org/10.1049/iet-rpg.2018.6030

    Article  Google Scholar 

  19. Li, P.; Xiong, L.; Wu, F.; Ma, M.; Wang, J.: Sliding mode controller based on feedback linearization for damping of sub-synchronous control interaction in DFIG-based wind power plants. Int. J. Electr. Power Energy Syst. 107, 239–250 (2019). https://doi.org/10.1016/j.ijepes.2018.11.020

    Article  Google Scholar 

  20. Roy TK, Mahmud MA. Hybrid Robust Adaptive Backstepping Sliding Mode Controller Design for Mitigating SSR in Series-Compensated DFIG-Based Wind Generation Systems. Conf Rec - IAS Annu Meet (IEEE Ind Appl Soc 2021;2021-October:2–7. doi:https://doi.org/10.1109/IAS48185.2021.9677445.

  21. Ebrahimkhani, S.: Robust fractional order sliding mode control of doubly fed induction generator (DFIG)-based wind turbines. ISA Trans. 63, 343–354 (2016). https://doi.org/10.1016/j.isatra.2016.03.003

    Article  Google Scholar 

  22. Saihi, L.; Berbaoui, B.; Glaoui, H.; Djilali, L.; Abdeldjalil, S.: Robust sliding mode H∞ controller of DFIG based on variable speed wind energy conversion system. Period Polytech. Electr. Eng. Comput. Sci. 64, 53–63 (2020). https://doi.org/10.3311/PPee.14490

    Article  Google Scholar 

  23. Patel, R.; Hafiz, F.; Swain, A.; Ukil, A.: Nonlinear rotor side converter control of DFIG based wind energy system. Electr. Power Syst. Res. 198, 107358 (2021). https://doi.org/10.1016/j.epsr.2021.107358

    Article  Google Scholar 

  24. Moreno-Valenzuela, J.; Quevedo-Pillado, Y.; Pérez-Aboytes, R.; González-Hernández, L.: Lyapunov-based adaptive control for the permanent magnet synchronous motor driving a robotic load. J. Circuits, Syst. Comput. (2017). https://doi.org/10.1142/S0218126617501687

    Article  Google Scholar 

  25. Liu, X.D.; Li, K.; Zhang, C.H.: Improved Backstepping Control with Nonlinear Disturbance Observer for the Speed Control of Permanent Magnet Synchronous Motor. J. Electr. Eng. Technol. 14(1), 275–285 (2019). https://doi.org/10.1007/s42835-018-00021-9

    Article  Google Scholar 

  26. Barambones, O.; Alkorta, P.; & De La Sen, M:. An adaptive sliding mode position control for induction motor drives. EUROCON 2011 - International Conference on Computer as a Tool - Joint with Conftele (2011). https://doi.org/10.1109/EUROCON.2011.5929166

  27. Mossa, A.; Echeikh, H.; El Ouanjli, N.; Alhelou, H.H.: Enhanced Second-Order Sliding Mode Control Technique for a Five-Phase Induction Motor. Int. Transact. on Electr. Energy Syst. (2022). https://doi.org/10.1155/2022/8215525

    Article  Google Scholar 

  28. Duarte-Mermoud, M.A.; Travieso-Torres, J.C.; Pelissier, I.S.; González, H.A.: Induction motor control based on adaptive passivity. Asian J. Cont. 14(1), 67–84 (2012). https://doi.org/10.1002/asjc.260

    Article  MathSciNet  MATH  Google Scholar 

  29. Bentaallah, A.; Massoum, A.; Benhamida, F.; Meroufel, A.: Adaptive feedback linearization control for asynchronous machine with nonlinear for natural dynamic complete observer. J. Electr. Eng. 63(2), 88–94 (2012). https://doi.org/10.2478/v10187-012-0013-y

    Article  Google Scholar 

  30. Eminoǧlu, I.; Altaş, I.H.: The effects of the number of rules on the output of a fuzzy logic controller employed to a PM dc motor. Comput. Electr. Eng. 24, 245–61 (1998). https://doi.org/10.1016/S0045-7906(97)00021-9

    Article  Google Scholar 

  31. Roose, A.I.; Yahya, S.; Al-Rizzo, H.: Fuzzy-logic control of an inverted pendulum on a cart. Comput. Electr. Eng. 61, 31–47 (2017). https://doi.org/10.1016/j.compeleceng.2017.05.016

    Article  Google Scholar 

  32. Bounar, N.; Labdai, S.; Boulkroune, A.: PSO–GSA based fuzzy sliding mode controller for DFIG-based wind turbine. ISA Trans. 85, 177–188 (2019). https://doi.org/10.1016/j.isatra.2018.10.020

    Article  Google Scholar 

  33. Dida, A.; Merahi, F.; Mekhilef, S.: New grid synchronization and power control scheme of doubly fed induction generator-based wind turbine system using fuzzy logic control. Comput. Electr. Eng. (2020). https://doi.org/10.1016/j.compeleceng.2020.106647

    Article  Google Scholar 

  34. Ali, M.; Talha, A.; Berkouk, E.: New M5P model tree-based control for doubly fed induction generator in wind energy conversion system. Wind Energy 23, 1831–45 (2020). https://doi.org/10.1002/we.2519

    Article  Google Scholar 

  35. Giannakis, A.; Karlis, A.; Karnavas, Y.L.: A combined control strategy of a DFIG based on a sensorless power control through modified phase-locked loop and fuzzy logic controllers. Renew. Energy 121, 489–501 (2018). https://doi.org/10.1016/j.renene.2018.01.052

    Article  Google Scholar 

  36. Kasbi, A.; Rahali, A.: Performance optimization of doubly fed induction generator (DFIG) equipped variable-speed wind energy turbines by using three-level converter with adaptive fuzzy PI control system. Mater. Today Proc. 47, 2648–2656 (2021). https://doi.org/10.1016/j.matpr.2021.05.406

    Article  Google Scholar 

  37. Ganthia, B.P.; Barik, S.K.; Nayak, B.: Genetic Algorithm Optimized and Type-I fuzzy logic-controlled power smoothing of mathematical modeled Type-III DFIG based wind turbine system. Mater. Today Proc. 56, 3355–3365 (2022). https://doi.org/10.1016/j.matpr.2021.10.193

    Article  Google Scholar 

  38. Belmokhtar, K.; Doumbia, M.L.; Agbossou, K.: Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly fed induction generator). Energy 76, 679–693 (2014). https://doi.org/10.1016/j.energy.2014.08.066

    Article  Google Scholar 

  39. Elyazid, A.; Yanis, H.; Koussaila, I.; Kaci, G.; Djamal, A.; Azeddine, H: New Fuzzy Speed Controller for Dual Star Permanent Magnet Synchronous Motor. 2021 IEEE 1st Int Maghreb Meet Conf Sci Tech Autom Control Comput Eng MI-STA 2021 - Proc:69–73.https://doi.org/10.1109/MI-STA52233.2021.9464422.

  40. Mesloub, H.; Benchouia, M.T.; Boumaaraf, R.; Goléa, A.; Goléa, N.; Becherif, M.: Design and implementation of DTC based on AFLC and PSO of a PMSM. Math Comput Simul 167, 340–355 (2020). https://doi.org/10.1016/j.matcom.2018.04.010

    Article  MathSciNet  MATH  Google Scholar 

  41. Farah, N.; Talib, M.H.N.; Mohd Shah, N.S.; Abdullah, Q.; Ibrahim, Z.; Lazi, J.B.M., et al.: A novel self-tuning fuzzy logic controller based induction motor drive system: an experimental approach. IEEE Access 7, 68172–68184 (2019). https://doi.org/10.1109/ACCESS.2019.2916087

    Article  Google Scholar 

  42. Benchouia, M.T.; Ghadbane, I.; Golea, A.; Srairi, K.; Benbouzid, M.E.H.: Implementation of adaptive fuzzy logic and PI controllers to regulate the DC bus voltage of shunt active power filter. Appl. Soft Comput. J 28, 125–131 (2015). https://doi.org/10.1016/j.asoc.2014.10.043

    Article  Google Scholar 

  43. Roselyn, J.P.; Chandran, C.P.; Nithya, C.; Devaraj, D.; Venkatesan, R.; Gopal, V., et al.: Design and implementation of fuzzy logic based modified real-reactive power control of inverter for low voltage ride through enhancement in grid connected solar PV system. Cont. Eng. Pract. 101, 104494 (2020). https://doi.org/10.1016/j.conengprac.2020.104494

    Article  Google Scholar 

  44. Suganthi, L.; Iniyan, S.; Samuel, A.A.: Applications of fuzzy logic in renewable energy systems - a review. Renew. Sustain. Energy Rev. 48, 585–607 (2015). https://doi.org/10.1016/j.rser.2015.04.037

    Article  Google Scholar 

  45. Farah, N.; Nizam Talib, M.H.; Ibrahim, Z.; Abdullah, Q.; Aydogdu, O.; Azri, M., et al.: Investigation of the Computational Burden Effects of Self-Tuning Fuzzy Logic Speed Controller of Induction Motor Drives with Different Rules Sizes. IEEE Access 9, 155443–155456 (2021). https://doi.org/10.1109/ACCESS.2021.3128351

    Article  Google Scholar 

  46. Talib, M.H.N.; Ibrahim, Z., et al.: An improved simplified rules fuzzy logic speed controller method applied for induction motor drive. ISA Trans. 105, 230–9 (2020). https://doi.org/10.1016/j.isatra.2020.05.040

    Article  Google Scholar 

  47. Tarbosh, Q.A.; Aydogdu, O.; Farah, N.; Talib, M.H.N.; Salh, A.; Cankaya, N., et al.: Review and investigation of simplified rules fuzzy logic speed controller of high-performance induction motor drives. IEEE Access 8, 49377–49394 (2020). https://doi.org/10.1109/ACCESS.2020.2977115

    Article  Google Scholar 

  48. Ali, O.A.; Ali, A.Y.; Sumait, B.S.: ‘Comparison between the Effects of Different Types of Membership Functions on Fuzzy Logic Controller Performance. Int. J. Emerg. Eng. Res. Technol. 3(3), 76–83 (2015)

    Google Scholar 

  49. Kosko, B.; Mitaim, S What is the best shape for a fuzzy set-in function approximation? Proceedings of the 5th IEEE International Conference on Fuzzy Systems (FUZZ-96); September 1996. pp. 1237–1243

  50. Introductory Chapter: Which Membership Function is Appropriate in Fuzzy System? BYAli Sadollah , Published: October 31st, 2018, DOI: https://doi.org/10.5772/intechopen.79552

  51. Zhao, J.; and Bose, B. K. "Evaluation of membership functions for fuzzy logic-controlled induction motor drive,": In IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02, , 1: IEEE, pp. 229–234, (2002) https://doi.org/10.1109/IECON.2002.1187512.

  52. Naik, K.A.; Gupta, C.P.; Fernandez, E.: Design and implementation of interval type-2 fuzzy logic-PI based adaptive controller for DFIG based wind energy system. Int J Electr Power Energy Syst 115, 105468 (2020). https://doi.org/10.1016/j.ijepes.2019.105468

    Article  Google Scholar 

  53. Raju, S.K.; Pillai, G.N.: Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators. Renew. Energy 88, 40–50 (2016). https://doi.org/10.1016/j.renene.2015.11.006

    Article  Google Scholar 

  54. Demirbas, S.: Self-tuning fuzzy-PI-based current control algorithm for doubly fed induction generator. IET Renew. Power Gener. 11, 1714–1722 (2017). https://doi.org/10.1049/iet-rpg.2016.0700

    Article  Google Scholar 

  55. Chabani, M.S.; Benchouia, M.T.; Golea, A.; Becherif, M.: Finite-state predictive current control of a standalone DFIG-based wind power generation systems: simulation and experimental analysis. J Control Autom. Electr. Syst. 32, 1332–1343 (2021). https://doi.org/10.1007/s40313-021-00750-9

    Article  Google Scholar 

  56. Soued, S.; Chabani, M.S.; Becherif, M.; Benchouia, M.T.; Ramadan, H.S.; Betka, A., et al.: Experimental behaviour analysis for optimally controlled standalone DFIG system. IET Electr Power Appl 13, 1462–1473 (2019). https://doi.org/10.1049/iet-epa.2018.5648

    Article  Google Scholar 

  57. Chabani, M. S.; Benchouia, M. T.; Golea, A.; & Boumaaraf, R. (2017). Implementation of direct stator voltage control of stand- alone DFIG based wind energy conversion system. In 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B).

  58. Lin, F.J.; Huang, Y.S.; Tan, K.H.; Lu, Z.H.; Chang, Y.R.: Intelligent controlled doubly fed induction generator system using PFNN. Neural Comput. Appl. 22, 1695–1712 (2013). https://doi.org/10.1007/s00521-012-0965-7

    Article  Google Scholar 

  59. Puchalapalli, S.; Singh, B.: A single input variable FLC for DFIG-Based WPGS in standalone mode. IEEE Trans. Sustain. Energy 11, 595–607 (2020). https://doi.org/10.1109/TSTE.2019.2898115

    Article  Google Scholar 

  60. Ammar, A.; Talbi, B.; Ameid, T.; Azzoug, Y.; Kerrache, A.: Predictive direct torque control with reduced ripples for induction motor drive based on T-S fuzzy speed controller. Asian J Control 21, 2155–2166 (2019). https://doi.org/10.1002/asjc.2148

    Article  MATH  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Saci Chabani.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Appendix A: Major parameters of experimental bench

Appendix A: Major parameters of experimental bench

See Table 3

Table 3 Main DFIG parameters

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabani, M.S., Benchouia, M.T., Golea, A. et al. Takagi–Sugeno Fuzzy Logic Controller for DFIG Operating in the Stand-Alone Mode: Simulations and Experimental Investigation. Arab J Sci Eng 48, 14605–14620 (2023). https://doi.org/10.1007/s13369-023-07704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07704-0

Keywords

Navigation