Skip to main content
Log in

Analysis of the Optimized Compensating Loops Effect on the Magnetic Induction Due to Very-High-Voltage Underground Cable Using Grey Wolf Optimizer

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Very-high-voltage (VHV) underground cables are often used to transport electrical energy in densely populated zones. This paper presents a two-dimensional computational method based on the formulation of Biot–Savart’s law to evaluate the magnetic induction levels generated by a VHV underground power cable of 275 kV and to apply an optimized shielding system for the magnetic induction using the compensating active and passive loops. The grey wolf optimizer algorithm is applied to find the optimal position of the geometric coordinates of the conductors of both passive and active loops and the capacitance value of the passive compensation. Generally, the study shows that the shielding with the compensation procedure using conductive and ferromagnetic materials can effectively reduce the magnetic induction values along the right-of-way corridor, in particular in the case of an active loop with ferromagnetic material. The simulation results obtained by the adopted method are compared with those obtained by the magnetization ellipse method. A good agreement was obtained, which can ensure the validity of the adopted method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. CIGRE.: Statistics of AC underground cables in power networks. Working Group B1.07, Technical Brochure 338, December (2007)

  2. ICF Consulting.: Overview of the potential for undergrounding the electricity networks in Europe. ICF Consultants to the European Commission, February (2003)

  3. Conti, S.; Dilettoso, E.; Rizzo, S.A.: Electromagnetic and thermal analysis of high voltage three-phase underground cables using finite element method. In: IEEE, International Conference on Environment and Electrical Engineering and Industrial and Commercial Power Systems Europe, Palermo, Italy, June 2018, pp. 1–6. https://doi.org/10.1109/EEEIC.2018.8525354

  4. Broere, W.: Urban underground space: solving the problems of today’s cities. Tunnel. Undergr. Space Technol. 55, 245–248 (2016). https://doi.org/10.1016/j.tust.2015.11.012

    Article  Google Scholar 

  5. Lewczuk, B.; Redlarski, G.; Żak, A., et al.: Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge. BioMed. Res. Int. 169459, 14 (2014). https://doi.org/10.1155/2014/169459

    Article  Google Scholar 

  6. Šinik, V.: Biological effects of electromagnetic fields, standards, recommendations and problems in measurements of electromagnetic fields. Infoteh Jahorina 10(E-VI-3), 855–859 (2011)

    Google Scholar 

  7. Kulkarni, G.; Gandhare, W.Z.: Proximity effects of high voltage transmission lines on humans. Int. J. Electr. Power Eng. 3(1), 1–11 (2012)

    Google Scholar 

  8. Vecchia, P.: Exposure of humans to electromagnetic fields. Standards and regulations. Ann. dell’Istituto Superiore di Sanita 43(3), 260–267 (2007)

    Google Scholar 

  9. Del-Pino-López, J.C.; Cruz-Romero, P.; Dular, P.: Parametric analysis of magnetic field mitigation shielding for underground power cables. Int. Conf. Renew. Energies Power Qual. 1(5), 519–526 (2017)

    Article  Google Scholar 

  10. Ahmadi, H.; Mohseni, S.; Shayegani, A.: Electromagnetic fields near transmission lines—problems and solutions. Iran. J. Environ. Health Sci. Eng. 7(2), 181–188 (2010)

    Google Scholar 

  11. Report.: Comparison of 500 kV overhead lines with 500 kV underground cables. Moorabool Shire Council, September (2020)

  12. Habiballah, I.O.; Farag, A.S.; Dawoud, M.M., et al.: Underground cable magnetic field simulation and management using new design configurations. Electr. Power Syst. Res. 45(2), 141–148 (1998)

    Article  Google Scholar 

  13. Holbert, K.E.; Karady, G.G.; Adhikari, S.G., et al.: Magnetic fields produced by underground residential distribution system. IEEE Trans. Power Deliv. 24(3), 616–1622 (2009). https://doi.org/10.1109/TPWRD.2009.2014276

    Article  Google Scholar 

  14. Budni, K.; Machczyński, W.: Magnetic field of underground cables. Sci. Pap. Silesian Univ. Technol. Elektryka 3(215), 7–17 (2010)

    Google Scholar 

  15. Kocatepe, C.; Kumru, C.F.; Taslak, E.: Analysis of magnetic field effects of underground power cables on human health. In: 5th International Symposium on Sustainable Development, Turkey, pp. 137–143 (2014)

  16. Ateş, K.; Carlak, H.F.; Özen, Ş.: Magnetic field exposures due to underground power cables: a simulation study. In: 2nd World Congress on Electrical Engineering and Computer Systems and Science, Budapest, Macaristan, (No. EEE 133), pp. 1–7 (2016). https://doi.org/10.11159/eee16.133

  17. Djekidel, R.; Mahi, D.; Hadjadj, A.: Assessment of magnetic induction emission generated by an underground HV cable. UPB Sci. Bull. Ser. C- Electr. Eng. Août 78(3), 179–194 (2016)

    Google Scholar 

  18. Zairul, A.A., Anthony, M.: Magnetic field simulation & measurement of underground cable system inside duct bank. In: 22 International Conference on Electricity Distribution, Stockholm, Sweden, Cired- Session 2, (No 1089), pp. 10–13 (2013)

  19. CIGRE.: Electric and magnetic fields produced by transmission systems, Description of phenomena practical guide for calculation, Interference and fields of study, Working Group 01- Committee 36, Paris (1980)

  20. Memari, A.R.: Optimal calculation of impedance of an auxiliary loop to mitigate magnetic field of a transmission line. IEEE Trans. Power Deliv. 20(2), 844–850 (2005)

    Article  Google Scholar 

  21. Conti, R.; Donazzi, F.; Maioli, P.; et al.: Some Italian experiences in the utilization of HV underground cable systems to solve local problems due to magnetic field and other environmental issues. Cigre Session, Paper C4–303 (2006)

  22. CIGRÉ.; Mitigation techniques of power frequency magnetic fields originated from electric power systems. Working Group C4.204, TB 373 (2009)

  23. Salinas, E.: Mitigation of power-frequency magnetic fields: with applications to substations and other parts of the electric network. PhD thesis, Chalmers University of Technology Göteborg, Sweden (2001)

  24. ICNIRP: International commission on non-ionizing radiation protection, guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 99(6), 818–836 (2010)

    Article  Google Scholar 

  25. IEEE Standards Coordinating Committee 28, on Non-Ionizing Radiation Hazards. IEEE Standard for Safety Levels with Respect to Human Exposure to Electromagnetic Fields, 0-3 KHz: C95. 6. IEEE (2002)

  26. Ministry of Health.: Electric and magnetic fields and your health: information on electric and magnetic fields associated with transmission lines, distribution lines and electrical equipment. Wellington, New Zealand, edition (2013)

  27. R. Stam.: Comparison of international policies on electromagnetic fields (power frequency and radiofrequency fields), Laboratory for Radiation Research, National Institute for Public Health and the Environment, RIVM, Netherlands (2011). https://doi.org/10.21945/RIVM-document-electromagnetic-fields

  28. Oliveira, H.M.; Miranda, J.A.: Biot–Savart-like law in electrostatics. Eur. J. Phys. 22(1), 31–38 (2001). https://doi.org/10.1088/0143-0807/22/1/304

    Article  MATH  Google Scholar 

  29. Canova, A.; Giaccone, L.; Cirimele, V.: Active and passive shield for aerial power lines. In: 25th International Conference and Exhibition on Electricity Distribution, Madrid, Spain, Paper N° 1096, pp. 1–5 (2019)

  30. Radwan, R.M.; Abdel-Salam, M.; Samy, M.M.; Mahdy, A.M.: Passive and active shielding of magnetic fields underneath overhead transmission lines theory versus experiment. In: 17th International Middle East Power Systems Conference, Mansoura University, Egypt, pp. 1–10 (2015)

  31. Djekidel, R.; Choucha, A.; Hadjadj, A.: Efficiency of some optimisation approaches with the charge simulation method for calculating the electric field under extra high voltage power lines. IET Gener. Transm. Distrib. 11(17), 4167–4174 (2017). https://doi.org/10.1049/iet-gtd.2016.1297

    Article  Google Scholar 

  32. Jamil, M.; Mittal, S.: Hourly load shifting approach for demand side management in smart grid using grasshopper optimisation algorithm. IET Gener. Transm. Distrib. 14(05), 808–815 (2020). https://doi.org/10.1049/iet-gtd.2019.0566

    Article  Google Scholar 

  33. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey Wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  34. Sharma, S.; Bhattacharjee, S.; Bhattacharya, A.: Grey wolf optimisation for optimal sizing of battery energy storage device to minimise operation cost of microgrid. IET Gener. Transm. Distrib. 10(03), 625–637 (2016). https://doi.org/10.1049/iet-gtd.2015.0429

    Article  Google Scholar 

  35. Shaikh, M.S.; Hua, C.; Jatoi, M.A., et al.: Application of grey wolf optimisation algorithm in parameter calculation of overhead transmission line system. IET Sci. Meas. Technol. 15(01), 1–14 (2021). https://doi.org/10.1049/smt2.12023

    Article  Google Scholar 

  36. Bessedik, S.A.; Djekidel, R.; Ameur, A.: Performance of different kernel functions for LS-SVM-GWO to estimate flashover voltage of polluted insulators. IET Sci. Meas. Technol. 12(6), 739–745 (2018). https://doi.org/10.1049/iet-smt.2017.0486

    Article  Google Scholar 

  37. Hasan, G.T.: Measurements of electromagnetic radiations generated by 11kv underground distribution power cables. Tikrit J. Eng. Sci. 20(3), 41–52 (2013)

    Article  Google Scholar 

  38. Marelli, M.; Argaut, P.; Lugschitz, H.; Kawakita, K.: Overhead transmission lines, gas insulated lines and underground cables. CIGRE, Paper RP:307–1 (2019)

  39. Kirk, M.T.: Dielectric (and magnetic) image methods. Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (November 21, 2009; updated February 7, 2020)

  40. Sayed, A.R.; Anis, H.I.: Technical and economic feasibility of passive shielding used to mitigate power lines’ magnetic Fields. WSEAS, Trans. Circuits Syst. 17, 38–46 (2018)

    Google Scholar 

  41. Djekidel, R.; Bessedik, S.A.; Spiteri, P.; Mahi, D.: Passive mitigation for magnetic coupling between HV power line and aerial pipeline using PSO algorithms optimization. Electric Power Syst. Res. 165, 18–26 (2018)

    Article  Google Scholar 

  42. Canova, A.; Bavastro, D.; Freschi, F., et al.: Magnetic shielding solutions for the junction zone of high voltage underground power lines. Electr. Power Syst. Res. 89, 109–115 (2012)

    Article  Google Scholar 

  43. Del-Pino-López, J.C.; Cruz-Romero, P.; Iribarnegaray, L.S.; Román, J.M.: Magnetic field shielding optimization in underground power cable duct banks. Electric Power Syst. Res. 114, 21–27 (2014)

    Article  Google Scholar 

  44. Memari, A.R.; Janischewskyj, W.: Mitigation of magnetic field near power lines. IEEE Trans. Power Deliv. 11(3), 1577–1586 (1996). https://doi.org/10.1109/61.517519

    Article  Google Scholar 

  45. Yamazaki, K.; Kawamoto, T.; Fujinami, H.: Requirements for power line magnetic field mitigation using a passive loop conductor. IEEE Trans. Power Deliv. 15(2), 646–651 (2000). https://doi.org/10.1109/61.852999

    Article  Google Scholar 

  46. Cruz, P.; Izquierdo, C.; Burgos, M.: Optimum passive shields for mitigation of power lines magnetic fields. IEEE Trans. Power Deliv. 18(4), 1357–1362 (2003). https://doi.org/10.1109/TPWRD.2003.817754

    Article  Google Scholar 

  47. Romero, P.C.; Riquelme, J.; Antonio de la Villa, J.; Ramos, J.L.M.: Ga-based passive loop optimization for magnetic field mitigation of transmission lines. Neurocomput. J. 70(16–18), 2679–2686 (2007)

    Google Scholar 

  48. Bravo-Rodríguez, J.C.; Del-Pino-López, J.C.; Cruz-Romero, P.: A survey on optimization techniques applied to magnetic field mitigation in power systems. Energies J. 12(7), 1332–1332 (2019). https://doi.org/10.3390/en12071332

    Article  Google Scholar 

  49. Książkiewicz, M.: Passive loop coordinates optimization for mitigation of magnetic field value in the proximity of a power line. Comput. Appl. Electr. Eng. 13, 77–87 (2015)

    Google Scholar 

  50. Budni, K.; Machczyński, W.: Power line magnetic field mitigation using a passive loop conductor. Poznan Univ. Technol. Acad. J. Electr. Eng. 73, 137–145 (2013)

    Google Scholar 

  51. Ippolito, M.G.; Puccio, A.; Ala, G.; Ganci, S.: Attenuation of low frequency magnetic fields produced by HV underground power cables. In: IEEE, 50th International Universities on Power Engineering Conference, Stoke on Trent, UK, pp 1–5 (2015). https://doi.org/10.1109/UPEC.2015.7339774

  52. Canova, A.; Del-Pino-López, J.C.; Giaccone, L.; Manca, M.: Active shielding system for ELF magnetic fields’. IEEE Trans. Magn 51(3), 1–4 (2015). https://doi.org/10.1109/TMAG.2014.2354515

    Article  Google Scholar 

  53. Barsali, S.; Giglioli, R.; Poli, D.: Active shielding of overhead line magnetic field: design and applications. Electr. Power Syst. Res. 110, 55–63 (2014). https://doi.org/10.1016/j.epsr.2014.01.005

    Article  Google Scholar 

  54. Celozzi, S.; Garzia, F.: Active shielding for power-frequency magnetic field reduction using genetic algorithms optimization. IEE Proc. Sci. Meas. Technol. 151(1), 2–7 (2004). https://doi.org/10.1049/ip-smt:20040002

    Article  Google Scholar 

  55. Cruz-Romero, P.; Izquierdo, C.; Burgos, M.; et al.: Magnetic field mitigation in power lines with passive and active loops. In: Proceeding CIGRE Session, Paris, France, pp 25–30 (2002)

  56. Ziolkowski, M.; Gratkowski, S.: Active, passive and dynamic shielding of static and low frequency magnetic fields, VDE Verlag. In: 15 th International Symposium on Theoretical Engineering, Lübeck, Germany, pp. 1–5 (2009).

  57. Duc, H.B.; Minh, T.P.; Minh, D.B., et al.: An investigation of magnetic field influence in underground High Voltage cable shields. Eng. Technol. Appl. Sci. Res. 12(4), 8831–8836 (2022). https://doi.org/10.48084/etasr.5021

    Article  Google Scholar 

  58. Mustaffa, Z.; Sulaiman, M.H.; Kahar, M.N.M.: LS-SVM Hyper-parameters optimization based on GWO algorithm for time series forecasting. In: IEEE, 4th International Conference on Software Engineering and Computer Systems, Kuantan, Malaysia, pp. 183–188 (2015). https://doi.org/10.1109/ICSECS.2015.7333107

  59. Thanoon, R.B.; Mitras, B.A.: Modified grey wolf optimization algorithm by using classical optimization methods. Int. J. Comput. Netw. Commun. Secur. 7(3), 49–60 (2019)

    Google Scholar 

  60. Ahmed, O.M.A.; Kahramanli, H.: Meta-Heuristic solution approaches for traveling salesperson problem. Int. J. Appl. Math. Electron. Comput. 6(3), 49–60 (2018)

    Google Scholar 

  61. Saravanan, R.; Subramanian, S.; Dharmalingam, V.; Ganesan, S.: Generation scheduling of wind thermal integrated power system using grey wolf optimization. J. Electr. Electron. Eng. 11(6), 48–55 (2016)

    Google Scholar 

  62. Zewen, L.; Yichao, H.; Huanzhe, L., et al.: A novel discrete grey wolf optimizer for solving the bounded knapsack problem. Int. Symp. Intell. Comput. Appl. 986, 101–114 (2019). https://doi.org/10.1007/978-981-13-6473-0_10

    Article  Google Scholar 

  63. Khan, S.U.; Rahim, M.K.A.; Ali, L.: Correction of array failure using grey wolf optimizer hybridized with an interior point algorithm. Front. Inf. Technol. Electron. Eng. 19(9), 1191–1202 (2018). https://doi.org/10.1631/FITEE.1601694

    Article  Google Scholar 

  64. Misakian, M.: ELF electric and magnetic field measurement methods. In: IEEE, International Symposium on Electromagnetic Compatibility, Dallas, USA, pp. 150–155 (1993). https://doi.org/10.1109/ISEMC.1993.473761

  65. IEEE Standard.: Procedures for measurement of power frequency electric and magnetic fields from AC power lines. IEEE, Std 644–2019 (Revision of IEEE Std 644–2008), January 2019, pp. 1–36. https://doi.org/10.1109/IEEESTD.2020.9068517

  66. Ermolenko, A.V., Biryukov, S.V.: Calculation of elliptical polarization electric field intensity. In: Conference on Dynamics of Systems, Mechanisms and Machines, pp. 1–4 (2014). https://doi.org/10.1109/Dynamics.2014.7005650

  67. Nexans.: 60–500 kV high voltage underground power cables, XLPE insulated cables. data sheet of high voltage cables (2011). http://www.nexans.com/Corporate/2013/60-500_kV_High_Voltage_full_BD2.pdf

  68. Yavuz, M. E.; Teixeira, F. L.: A numerical study on the sensitivity of time-reversal imaging methods against clutter, noise and model perturbations. In: Baum, C.E., Stone, A.P., Tyo, J.S. (eds): Ultra-wideband short-pulse electromagnetics 8. Springer, New York, NY, pp. 219–226 (2007). https://doi.org/10.1007/978-0-387-73046-2_29

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachir Bentouati.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabah, D., Bentouati, B., El-Sehiemy, R.A. et al. Analysis of the Optimized Compensating Loops Effect on the Magnetic Induction Due to Very-High-Voltage Underground Cable Using Grey Wolf Optimizer. Arab J Sci Eng 48, 14407–14422 (2023). https://doi.org/10.1007/s13369-023-07656-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07656-5

Keywords

Navigation