Skip to main content
Log in

Characterization of an FDM-3D Printed Moldcore in a Thermoforming Process Using Taguchi in Conjunction with Lumped-Capacitance Method

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Fused deposition modeling (FDM) is categorized in additive technology where prototypes and functional components are fabricated with no limitation of shape complexity and shorter part development time. However, besides its great advantages, its layer-by-layer fabrication has a weakness of poor surface roughness, and its plastic materials have low thermal conductivity. While there have been a lot of studies of the surface roughness in FDM, it is still required to solve the thermal problem that prevents FDM from being applied in manufacturing processes incorporating heating, such as thermoforming. In this paper, a new post-processing method for FDM-3D printed moldcore is experimentally investigated for surface finish improvement and heat absorption reduction to broaden the application scope of FDM. The Taguchi method in conjunction with a lumped-capacitance model is used in respect of multi-input and single-output (MISO). The results show that a chemical treatment using dimethylketone (acetone) improved the surface roughness while aluminum spray coating decreased heat absorption of the FDM’s samples using acrylonitrile–butadiene–styrene (ABS) filament. The dimensional variation during this process is also confirmed to be very small. This low-cost post-processing technique is found to be easily applied on both lab-scale and manufacturing scales, especially for low-volume production or prototype fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mishra, S.B.; Malik, R.; Mahapatra, S.S.: Effect of external perimeter on flexural strength of FDM build parts. Arab. J. Sci. Eng. 42, 4587–4595 (2017). https://doi.org/10.1007/s13369-017-2598-8

    Article  Google Scholar 

  2. Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L.: Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv. Manuf. 3, 42–53 (2015). https://doi.org/10.1007/s40436-014-0097-7

    Article  Google Scholar 

  3. Butt, J.; Oxford, P.; Sadeghi-Esfahlani, S.; Ghorabian, M.; Shirvani, H.: Hybrid manufacturing and mechanical characterization of Cu/PLA composites. Arab. J. Sci. Eng. 45, 9339–9356 (2020). https://doi.org/10.1007/s13369-020-04778-y

    Article  Google Scholar 

  4. Samykano, M.: Mechanical property and prediction model for FDM-3D printed polylactic acid (PLA). Arab. J. Sci. Eng. 46, 7875–7892 (2021). https://doi.org/10.1007/s13369-021-05617-4

    Article  Google Scholar 

  5. Shunmugasundaram, M.; Nagarajan, S.M.; Reddy, Y.; Chaurasiya, P.K.; Kumar, A.; Rajak, U.: An experimental study and joining parameters optimization of friction stir weld butt joint by Taguchi approach to maximize the mechanical properties. Arab. J. Sci. Eng. 47, 8601–8615 (2022)

    Article  Google Scholar 

  6. Ogunbiyi, O.; Iwarere, S.A.; Daramola, M.O.: Empirical prediction of optimum process conditions of spark plasma–sintered magnesium composite (AZ91D-Ni–GNPs) using response surface methodology (RSM) approach. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-07012-z

    Article  Google Scholar 

  7. Wu, J.; Jiang, Z.; Wan, L.; Song, H.; Abbass, K.: Robust optimization for precision product using Taguchi-RSM and desirability function. Arab. J. Sci. Eng. 46, 2803–2814 (2021). https://doi.org/10.1007/s13369-020-05326-4

    Article  Google Scholar 

  8. NakhostinPanahi, P.; Mohajer, S.; Rasoulifard, M.H.: Photocatalytic of congo red decolorization in the presence of Ag/AgCl/TiO2 nanocomposite: optimization of process with Taguchi method. Arab. J. Sci. Eng. 46, 5619–5632 (2021). https://doi.org/10.1007/s13369-020-05157-3

    Article  Google Scholar 

  9. Singh, J.; Singh, R.; Singh, H.: Investigations for improving the surface finish of FDM based ABS replicas by chemical vapor smoothing process: a case study. Assem. Autom. 37, 13–21 (2017). https://doi.org/10.1108/AA-12-2015-127

    Article  Google Scholar 

  10. Jo, K.H.; Jeong, Y.S.; Lee, J.H., et al.: A study of post-processing methods for improving the tightness of a part fabricated by fused deposition modeling. Int. J. Precis. Eng. Manuf. 17, 1541–1546 (2016). https://doi.org/10.1007/s12541-016-0180-z

    Article  Google Scholar 

  11. Garg, A.; Bhattacharya, A.; Batish, A.: On surface finish and dimensional accuracy of FDM parts after cold vapor treatment. Mater. Manuf. Process. 31, 522–529 (2016). https://doi.org/10.1080/10426914.2015.1070425

    Article  Google Scholar 

  12. McCullough, E.J.; Yadavalli, V.K.: Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices. J. Mater. Process. Technol. 213, 947–954 (2013). https://doi.org/10.1016/j.jmatprotec.2012.12.015

    Article  Google Scholar 

  13. Galantucci, L.M.; Lavecchia, F.; Percoco, G.: Experimental study aiming to enhance the surface finish of fused deposition modeled parts. CIRP Ann. Manuf. Technol. 58, 189–192 (2009)

    Article  Google Scholar 

  14. Kulkarni, P.; Dutta, D.: On the integration of layered manufacturing and material removal processes. J. Manuf. Sci. Eng. Trans. ASME 122, 100–108 (2000)

    Article  Google Scholar 

  15. Williams, R.E.; Melton, V.L.: Abrasive flow finishing of stereolithography prototypes. Rapid Prototyp. J. 4, 56–67 (1998)

    Article  Google Scholar 

  16. Leong, K.F.; Chua, C.K.; Chua, G.S.; Tan, C.H.: Abrasive jet deburring of jewellery models built by stereolithography apparatus (SLA). J. Mater. Process. Technol. 83, 36–47 (1998)

    Article  Google Scholar 

  17. Pandey, P.M.; Reddy, N.V.; Dhande, S.G.: Improvement of surface finish by staircase machining in fused deposition modeling. J. Mater. Process. Technol. 132, 323–331 (2003)

    Article  Google Scholar 

  18. İç, Y.T.; Akkoç, F.S.; Gümüşboğa, N.; Ballı, Z.: A new multi-response Taguchi-based goal programming model for sustainable turning process. Arab. J. Sci. Eng. 47, 3915–3928 (2022)

    Article  Google Scholar 

  19. Kuo, C.C.; Su, S.J.: A simple method for improving surface quality of rapid prototype. Indian J. Eng. Mater. Sci. 20, 465–470 (2013)

    Google Scholar 

  20. Rajaguru, J.; Duke, M.; Au, C.: Development of rapid tooling by rapid prototyping technology and electroless nickel plating for low-volume production of plastic parts. Int. J. Adv. Manuf. Technol. 78, 31–40 (2015). https://doi.org/10.1007/s00170-014-6619-4

    Article  Google Scholar 

  21. Daneshmand, S.; Aghanajafi, C.; Ahmadi Nadooshan, A.: The effect of chromium coating in RP technology for airfoil manufacturing. Sadhana 35, 569–584 (2010)

    Article  Google Scholar 

  22. Equbal, A.; Sood, A.K.: Investigations on metallization in FDM build ABS part using electroless deposition method. J. Manuf. Process. 19, 22–31 (2015)

    Article  Google Scholar 

  23. Kovacs, J.G., et al.: Thermal simulations and measurements for rapid tool inserts in injection molding applications. Appl. Therm. Eng. 85, 44–51 (2015)

    Article  Google Scholar 

  24. Nguyen, T.K.; Lee, B.-K.: Post-processing of FDM parts to improve surface and thermal properties. Rapid Prototyp. J. 24, 1091–1100 (2018)

    Article  Google Scholar 

  25. Nguyen, T.K.; Chau, M.Q.; Do, T.C.; Pham, A.D.: Characterization of geometrical parameters of plastic bottle shredder blade utilizing a two-step optimization method. Arch. Mech. Eng. 68, 253–269 (2021)

    Google Scholar 

  26. Bergman, T.L.; Lavine, A.S.; Incropera, F.P.: Fundamentals of Heat and Mass Transfer, 7th edn. Wiley, New York (2011)

    Google Scholar 

  27. Lienhard, I.J.H.; Lienhard, V.J.H.: A Heat Transfer Textbook. Phlogiston Press, London (2013)

    MATH  Google Scholar 

  28. Brinken, F.; Potente, H.: Some considerations of heat-transfer problems in thermoforming. Polym. Eng. Sci. 20, 1009–1014 (1980)

    Article  Google Scholar 

  29. Puehringer, J.F.; Zitzenbacher, G.; Spreitzer, C.: Study of heat absorption in thermoforming for transparent and filled polystyrene. Int. Polym. Process. 28, 14–23 (2013)

    Article  Google Scholar 

  30. Throne, J.L.: Methods of heating sheet. In: Throne, J.L. (Ed.) Understanding Thermoforming, 2nd edn., pp. 101–127. Hanser, Munich (2008)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Xuan Chien Nguyen, Hoang Anh Duong Pham, Manh Hung Pham, Trung Phi Nguyen (Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam) for their support in the experiment process.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Trieu Khoa Nguyen or Anh-Duc Pham.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.K., Chau Duc, K. & Pham, AD. Characterization of an FDM-3D Printed Moldcore in a Thermoforming Process Using Taguchi in Conjunction with Lumped-Capacitance Method. Arab J Sci Eng 48, 11989–12000 (2023). https://doi.org/10.1007/s13369-023-07646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07646-7

Keywords

Navigation