Skip to main content
Log in

The Dynamic Response of AuxHex and Star-Reentrant Honeycomb Cored Sandwich Panels Subject to Blast Loading

  • Research Article-mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In order to balance the blast protective performance and lightweight property, sandwich panels with various geometries of core are being employed in the military armours and modern-day combat vehicles. Owing to the superior energy absorption capacity of auxetic-reentrant cellular structures, hybridizing auxetic cells with the regular hexagonal cells in the honeycomb core for the purpose of blast protection could be a promising method. Therefore, novel honeycomb cores with combined auxetic and hexagonal cells (AuxHex and Star-Reentrant) are designed for blast protection panel with an aim to enhance the blast performance by improving the energy absorption and minimizing the dynamic deflection of the back plate. Initially, the dynamic response of honeycomb sandwich panels with various regular geometrical cores is analysed and validated with the experimental results from the literature. Further, air blast analysis has been performed on AuxHex and Star-Reentrant honeycomb cored sandwich panel having same relative density as that of hexagonal honeycomb core under exactly same conditions. In addition to that, the study is extended for varying charges of TNT and at different stand-off distances. It has been revealed that the sandwich panel with AuxHex and Star-Reentrant core of same relative density as that of hexagonal honeycomb core absorbs 28% and 19.2% more amount of energy and experiences 17% and 8% less deflection, respectively, than those with regular hexagonal honeycomb core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig.12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Meyers, M.A.: Dynamic Behavior of Materials. Wiley, Hoboken (1994)

    Book  MATH  Google Scholar 

  2. Li, B.; Liu, Y.; Tan, K.-T.: A novel meta-lattice sandwich structure for dynamic load mitigation. J. Sandwich Struct. Mater. 21(6), 1880–1905 (2019)

    Article  Google Scholar 

  3. Chen, G.; Cheng, Y.; Zhang, P.; Liu, J.; Chen, C.; Cai, S.: Design and modelling of auxetic double arrowhead honeycomb core sandwich panels for performance improvement under air blast loading. J. Sandwich Struct. Mater. 23(8), 3574–3605 (2021)

    Article  Google Scholar 

  4. Sahu, S.K.; Badgayan, N.D.; Samanta, S.; Rama Sreekanth, P.S.: Evaluation of cell parameter variation on energy absorption characteristic of thermoplastic honeycomb sandwich structure. Arab. J. Sci. Eng. 46(12), 12487–12507 (2021)

    Article  Google Scholar 

  5. Haq, A.U.; Reddy, N.S.K.: A brief review on various high energy absorbing materials. Mater. Today Proc. 38, 3198–3204 (2021). https://doi.org/10.1016/j.matpr.2020.09.648

    Article  Google Scholar 

  6. Kangda, M.Z.; Bakre, S.: Positive-phase blast effects on base-isolated structures. Arab. J. Sci. Eng. 44(5), 4971–4992 (2019)

    Article  Google Scholar 

  7. Imbalzano, G.; Tran, P.; Ngo, T.D.; Lee, P.V.: Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. J. Sandwich Struct. Mater. 19(3), 291–316 (2017)

    Article  Google Scholar 

  8. Garrido Silva, B.; Alves, F.; Sardinha, M.; Reis, L.; Leite, M.; Deus, A. M.; Vaz, M. F. Functionally graded cellular cores of sandwich panels fabricated by additive manufacturing. Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl. 14644207221084611(2022)

  9. Wang, T.; Qin, Q.; Wang, M.; Yu, W.; Wang, J.; Zhang, J.; Wang, T.J.: Blast response of geometrically asymmetric metal honeycomb sandwich plate: experimental and theoretical investigations. Int. J. Impact Eng. 105, 24–38 (2017)

    Article  Google Scholar 

  10. Liu, J.; Wang, Z.; Hui, D.: Blast resistance and parametric study of sandwich structure consisting of honeycomb core filled with circular metallic tubes. Compos. B Eng. 145, 261–269 (2018)

    Article  Google Scholar 

  11. Ashby, M.F.; Evans, T.; Fleck, N.A.; Hutchinson, J.W.; Wadley, H.N.G.; Gibson, L.J.: Metal Foams: A Design Guide. Elsevier, Amsterdam (2000)

    Google Scholar 

  12. Ling, X.; Zhang, Y.F.; Wang, Y.Q.: Dynamic response of buried fluid-conveying pipelines subjected to blast loading using shell theory. Arab. J. Sci. Eng. 46(5), 4883–4893 (2021)

    Article  Google Scholar 

  13. Tan, P.: Finite element simulation of the behaviours of laminated armour systems against blast wave and projectile dynamic impacts. Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl. 227(1), 2–15 (2013)

    Google Scholar 

  14. Sahu, S.K.; Rama Sreekanth, P.S.: Experimental investigation of in-plane compressive and damping behavior anisotropic graded honeycomb structure. Arab. J. Sci. Eng. 47(12), 15741–15753 (2022). https://doi.org/10.1007/s13369-022-06771-z

    Article  Google Scholar 

  15. Sur, A.; Darvekar, S.; Shah, M.: Recent advancements of micro-lattice structures: application, manufacturing methods, mechanical properties, topologies and challenges. Arab. J. Sci. Eng. 46(12), 11587–11600 (2021)

    Article  Google Scholar 

  16. Grujicic, M.; Yavari, R.; Snipes, J.S.; Ramaswami, S.: Use of aluminum foam core sandwich structures to improve the blast-mitigation performance of light tactical vehicle side-vent-channel solution. Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl. 232(12), 993–1011 (2018)

    Google Scholar 

  17. Yao, S.; Zhou, Y.; Li, Z.; Zhang, P.; Cao, Y.; Ping, X.: Energy absorption characteristics of square frustum lattice structure. Compos. Struct. 275, 114492 (2021). https://doi.org/10.1016/j.compstruct.2021.114492

    Article  Google Scholar 

  18. Cai, S.; Zhang, P.; Dai, W.; Cheng, Y.; Liu, J.: Multi-objective optimization for designing metallic corrugated core sandwich panels under air blast loading. J. Sandwich Struct. Mater. 23(4), 1192–1220 (2021)

    Article  Google Scholar 

  19. Li, Y.; Chen, Z.; Xiao, D.; Wenwang, Wu.; Fang, D.: The Dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading. Int. J. Impact Eng 137, 103442 (2020)

    Article  Google Scholar 

  20. Cong, P.H.; Quyet, P.K.; Duc, N.D.: Effects of lattice stiffeners and blast load on nonlinear dynamic response and vibration of auxetic honeycomb plates. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235(23), 7192–7211 (2021). https://doi.org/10.1177/0954406221992797

    Article  Google Scholar 

  21. Wang, L.; Saito, K.; Gotou, Y.; Okabe, Y.: Design and fabrication of aluminum honeycomb structures based on origami technology. J. Sandwich Struct. Mater. 21(4), 1224–1242 (2019)

    Article  Google Scholar 

  22. Omidvar, H.; Azari, K.K.; Mohammad Taheri, A.; Saghafi, A.A.: Impact and ballistic behavior optimization of kevlar–epoxy composites by taguchi method. Arab. J. Sci. Eng. 38(5), 1161–1167 (2013). https://doi.org/10.1007/s13369-012-0381-4

    Article  Google Scholar 

  23. Dharmasena, K.P.; Wadley, H.N.G.; Williams, K.; Xue, Z.; Hutchinson, J.W.: Response of metallic pyramidal lattice core sandwich panels to high intensity impulsive loading in air. Int. J. Impact Eng. 38(5), 275–289 (2011). https://doi.org/10.1016/j.ijimpeng.2010.10.002

    Article  Google Scholar 

  24. Kang, K.-J.: Wire-woven cellular metals: the present and future. Prog. Mater Sci. 69, 213–307 (2015)

    Article  Google Scholar 

  25. Huang, J.; Zhang, Q.; Scarpa, F.; Liu, Y.; Leng, J.: In-plane elasticity of a novel auxetic honeycomb design. Compos. B Eng. 110, 72–82 (2017)

    Article  Google Scholar 

  26. Qi, C.; Pei, L.-Z.; Remennikov, A.; Yang, S.; Liu, J.; Wang, J.-S.; Liao, X.-W.: Parametric study and optimization of the protect system containing a re-entrant hexagon cored sandwich panel under blast impact. Compos. Struct. 252, 112711 (2020)

    Article  Google Scholar 

  27. Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235(4792), 1038–1040 (1987)

    Article  Google Scholar 

  28. Ingrole, A.; Hao, A.; Liang, R.: Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater. Des. 117, 72–83 (2017)

    Article  Google Scholar 

  29. Yazdani Sarvestani, H.; Akbarzadeh, A.H.; Niknam, H.; Hermenean, K.: 3D printed architected polymeric sandwich panels: energy absorption and structural performance. Compos. Struct. 200, 886–909 (2018). https://doi.org/10.1016/j.compstruct.2018.04.002

    Article  Google Scholar 

  30. Fu, M.-H.; Chen, Yu.; Ling-Ling, Hu.: A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Compos. Struct. 160, 574–585 (2017)

    Article  Google Scholar 

  31. Del Broccolo, S.; Laurenzi, S.; Scarpa, F.: AUXHEX – A Kirigami inspired zero Poisson’s ratio cellular structure. Compos. Struct. 176, 433–441 (2017). https://doi.org/10.1016/j.compstruct.2017.05.050

    Article  Google Scholar 

  32. Chen, G.; Cheng, Y.; Zhang, P.; Cai, S.; Liu, J.: Blast resistance of metallic double arrowhead honeycomb sandwich panels with different core configurations under the paper tube-guided air blast loading. Int. J. Mech. Sci. 201, 106457 (2021)

    Article  Google Scholar 

  33. Kumar, S.; Vyavahare, S.; Teraiya, S.; Kootikuppala, J.; Bogala, H.: A state of the art review of additively manufactured auxetic structures. In: Dave, H.K.; Dixit, U.S.; Nedelcu, D. (Eds.) Recent Advances in Manufacturing Processes and Systems: Select Proceedings of RAM 2021, pp. 69–84. Springer Nature Singapore, Singapore (2022). https://doi.org/10.1007/978-981-16-7787-8_6

    Chapter  Google Scholar 

  34. Aryal, B.; Morozov, E. V.; Shankar, K. Effects of ballistic impact damage on mechanical behaviour of composite honeycomb sandwich panels. J. Sandwich Struct. Mater. 1099636220909743 (2020)

  35. Rodriguez-Millan, M.; Garcia-Gonzalez, D.; Rusinek, A.; Arias, A.: Influence of stress state on the mechanical impact and deformation behaviors of aluminum alloys. Metals 8(7), 520 (2018)

    Article  Google Scholar 

  36. Banerjee, A.; Dhar, S.; Acharyya, S.; Datta, D.; Nayak, N.: Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel. Mater. Sci. Eng., A 640, 200–209 (2015)

    Article  Google Scholar 

  37. Ghazlan, A.; Ngo, T.; Le, V.T.; Nguyen, T.; Linforth, S.; Remennikov, A.; Whittaker, A.: A bio-mimetic cellular structure for mitigating the effects of impulsive loadings–a numerical study. J. Sandwich Struct. Mater. 23(6), 1929–1955 (2021)

    Article  Google Scholar 

  38. Dharmasena, K.P.; Wadley, H.N.G.; Xue, Z.; Hutchinson, J.W.: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int. J. Impact Eng. 35(9), 1063–1074 (2008). https://doi.org/10.1016/j.ijimpeng.2007.06.008

    Article  Google Scholar 

  39. Jin, X.; Wang, Z.; Ning, J.; Xiao, G.; Liu, E.; Shu, X.: Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading. Compos. B Eng. 106, 206–217 (2016)

    Article  Google Scholar 

  40. Wang, Y.; Yi, Yu.; Wang, C.; Zhou, G.; Karamoozian, A.; Zhao, W.: On the out-of-plane ballistic performances of hexagonal, reentrant, square, triangular and circular honeycomb panels. Int. J. Mech. Sci. 173, 105402 (2020)

    Article  Google Scholar 

  41. Acosta, P.F.: Overview of UFC 3-340-02 structures to resist the effects of accidental explosions. Struct. Congr. 2011, 1454–1469 (2011)

    Google Scholar 

  42. Xu, M.; Ziran, Xu.; Zhang, Z.; Lei, H.; Bai, Y.; Fang, D.: Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: theoretical and experimental studies. Int. J. Mech. Sci. 159, 43–57 (2019)

    Article  Google Scholar 

  43. Li, X.; Zhang, P.; Wang, Z.; Guiying, Wu.; Zhao, L.: Dynamic behavior of aluminum honeycomb sandwich panels under air blast: experiment and numerical analysis. Compos. Struct. 108, 1001–1008 (2014)

    Article  Google Scholar 

  44. Roudbeneh, F.H.; Liaghat, G.; Sabouri, H.; Hadavinia, H.: Experimental investigation of impact loading on honeycomb sandwich panels filled with foam. Int. J. Crashworthiness 24(2), 199–210 (2019). https://doi.org/10.1080/13588265.2018.1426233

    Article  Google Scholar 

  45. Yang, L.; Li, X.; Zi, F.; Yang, S.; Zhang, Z.; Jia, Q.; Dong, Y.; Linzhi, Wu.: Dynamic response of graded PVC foam sandwich panel under air blast loads. Mech. Adv. Mater. Struct. 29(25), 3694–3708 (2021). https://doi.org/10.1080/15376494.2021.1909190

    Article  Google Scholar 

  46. Xue, Z.; Hutchinson, J.W.: Crush dynamics of square honeycomb sandwich cores. Int. J. Numer. Meth. Eng. 65(13), 2221–2245 (2006)

    Article  MATH  Google Scholar 

  47. Wadley, H.N.G.; Børvik, T.; Olovsson, L.; Wetzel, J.J.; Dharmasena, K.P.; Hopperstad, O.S.; Deshpande, V.S.; Hutchinson, J.W.: Deformation and fracture of impulsively loaded sandwich panels. J. Mech. Phys. Solids 61(2), 674–699 (2013). https://doi.org/10.1016/j.jmps.2012.07.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahsan Ul Haq.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ul Haq, A., Gunashekar, G. & Narala, S.K.R. The Dynamic Response of AuxHex and Star-Reentrant Honeycomb Cored Sandwich Panels Subject to Blast Loading. Arab J Sci Eng 48, 11755–11771 (2023). https://doi.org/10.1007/s13369-022-07564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07564-0

Keywords

Navigation