Skip to main content

A State of the Art Review of Additively Manufactured Auxetic Structures

  • Conference paper
  • First Online:
Recent Advances in Manufacturing Processes and Systems

Abstract

Auxetic structures are negative Poisson’s ratio (NPR) structures that expand under tension and contract under compression. These structures are extensively used in various applications including automotive, biomedical, sports, aerospace, and architecture. These structures have unique mechanical characteristics such as high shear modulus, energy absorption, indentation resistance, and vibro-acoustic properties. In the previous few years, these structures have been widely manufactured by various additive manufacturing (AM) technologies. In this paper, state of the art review on mechanical properties of auxetic structures namely re-entrant, chiral, arrowhead, star-shaped, missing rib, and rigid rotating structures are discussed. Further, based on the critical review the scope of future research work in this domain is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gibson L, Ashby M (1997) Cellular solids: structure and properties (Cambridge Solid State Science Series). Cambridge University Press, Cambridge. 101017/CBO9781139878326

    Google Scholar 

  2. Evans K (1991) Auxetic polymers: a new range of materials. Endeavour 15:170–174. 101016/0160–9327 (91)90123-S

    Google Scholar 

  3. Lakes R (1987) Foam structures with a negative Poisson’s ratio. Science 235:1038–1041

    Article  Google Scholar 

  4. Kolken HM, Zadpoor AA (2017) Auxetic mechanical metamaterials. RSC Adv 7(9):5111–5129

    Google Scholar 

  5. Smith FC, Scarpa FL, Burriesci G (2002) Simultaneous optimization of the electromagnetic and mechanical properties of honeycomb materials. In: SPIE’s 9th annual international symposium on smart structures and materials, International Society for Optics and Photonics 582–591s

    Google Scholar 

  6. Doyoyo M, Hu JW (2006) Plastic failure analysis of an auxetic foam or inverted strut lattice under longitudinal and shear loads. J Mech Phys Solids 54(7):1479–1492

    Article  MATH  Google Scholar 

  7. Joshi S, Ju J, Berglind L, Rusly R, Summers JD and DesJardins JD (2010) January experimental damage characterization of hexagonal honeycombs subjected to in-plane shear loading. In: ASME 2010 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers Digital Collection, pp 35–41

    Google Scholar 

  8. Scarpa F, Tomlin PJ (2000) On the transverse shear modulus of negative Poisson’s ratio honeycomb structures. Fatigue Fract Eng Mater Struct 23(8):717–720

    Article  Google Scholar 

  9. Ju J, Summers JD (2011) Compliant hexagonal periodic lattice structures having both high shear strength and high shear strain. Mater Des 32(2):512–524

    Article  Google Scholar 

  10. Ju J, Summers JD (2011) Hyperelastic constitutive modeling of hexagonal honeycombs subjected to in-plane shear loading. J Eng Mater Technol 133(1):011005

    Google Scholar 

  11. Zhang X, Yang D (2016) Mechanical properties of auxetic cellular material consisting of re-entrant hexagonal honeycombs. Materials 9(11):900

    Article  Google Scholar 

  12. Zorzetto L, Ruffoni D (2017) Re-entrant inclusions in cellular solids: from defects to reinforcements. Compos Struct 176:195–204

    Article  Google Scholar 

  13. Ingrole A, Hao A, Liang R (2017) Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater Des 117:72–83

    Article  Google Scholar 

  14. Wagner M, Chen T, Shea K (2017) Large shape transforming 4D auxetic structures. 3D Printing Additive Manuf 4(3):133–142

    Google Scholar 

  15. Li T, Wang L (2017) Bending behavior of sandwich composite structures with tunable 3D-printed core materials. Compos Struct 175:46–57

    Article  Google Scholar 

  16. Wang Y, Zhao W, Zhou G, Gao Q, Wang C (2018) Suspension mechanical performance and vehicle ride comfort applying a novel jounce bumper based on negative Poisson’s ratio structure. Adv Eng Softw 122:1–12

    Article  Google Scholar 

  17. Wang T, Wang L, Ma Z, Hulbert GM (2018) Elastic analysis of auxetic cellular structure consisting of re-entrant hexagonal cells using a strain-based expansion homogenization method. Mater Des 160:284–293

    Article  Google Scholar 

  18. Xue Y, Wang X, Wang W, Zhong X, Han F (2018) Compressive property of Al-based auxetic lattice structures fabricated by 3-D printing combined with investment casting. Mater Sci Eng A 722:255–262

    Article  Google Scholar 

  19. Zhang J, Lu G, Wang Z, Ruan D, Alomarah A, Durandet Y (2018) Large deformation of an auxetic structure in tension: experiments and finite element analysis. Compos Struct 184:92–101

    Article  Google Scholar 

  20. Chen Y, Li T, Jia Z, Scarpa F, Yao CW, Wang L (2018) 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Mater Des 137:226–234

    Article  Google Scholar 

  21. Yang C, Vora HD, Chang Y (2018) Behavior of auxetic structures under compression and impact forces. Smart Mater Struct 27(2) p025012

    Google Scholar 

  22. Sarvestani HY, Akbarzadeh AH, Niknam H, Hermenean K (2018) 3D printed architected polymeric sandwich panels: energy absorption and structural performance. Compos Struct 200:886–909

    Article  Google Scholar 

  23. Fang G, Yuan S, Meng S, Liang J (2018) Graded negative Poisson’s ratio honeycomb structure design and application. J Sandwich Struct Mater 21(7):2527–2547

    Article  Google Scholar 

  24. Cheng L, Zhang P, Biyikli E, Bai J, Robbins J, To A (2017) Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation. Rapid Prototyping J 23(4):660–677

    Article  Google Scholar 

  25. Araújo H, Leite M, Ribeiro AR, Deus AM, Reis L, Vaz MF (2019) The effect of geometry on the flexural properties of cellular core structures. Proc Inst Mech Eng Part L J Mater Des Appl 233(3):338–347

    Google Scholar 

  26. Raeisi S, Tapkir P, Ansari F, Tovar A (2019) Design of a hybrid honeycomb unit cell with enhanced in-plane mechanical properties (No 2019-01-0710) SAE technical paper

    Google Scholar 

  27. Xu M, Xu Z, Zhang Z, Lei H, Bai Y, Fang D (2019) Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: theoretical and experimental studies. Int J Mech Sci 159:43–57

    Article  Google Scholar 

  28. Li X, Wang Q, Yang Z, Lu Z (2019) Novel auxetic structures with enhanced mechanical properties. Extreme Mech Lett 27:59–65

    Article  Google Scholar 

  29. Alomarah A, Masood SH, Sbarski I, Faisal B, Gao Z, Ruan D (2019) Compressive properties of 3D printed auxetic structures: experimental and numerical studies. Virtual Phys Prototyping 15(1):1–21

    Article  Google Scholar 

  30. Wu, W, Hu W, Qian G, Liao H, Xu X, Berto F (2019) Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater Des 180:107950

    Google Scholar 

  31. Lakes R (2001) Elastic and viscoelastic behavior of chiral materials. Int J Mech Sci 43(7):579–1589

    Article  MATH  Google Scholar 

  32. Bornengo D, Scarpa F, Remillat CDLR (2005) Evaluation of hexagonal chiral structure for morphing airfoil concept. Proc Inst Mech Eng Part G J Aerosp Eng 219(3):185–192

    Article  Google Scholar 

  33. Spadoni A, Ruzzene M, Scarpa F (2005) Global and local linear buckling behavior of a chiral cellular structure. Phys Status Solidi (b) 242(3):695–709

    Article  Google Scholar 

  34. Spadoni A, Ruzzene M, Scarpa F (2006) Dynamic response of chiral truss-core assemblies. J Intell Mater Syst Struct 17(11):941–952

    Article  Google Scholar 

  35. Scarpa F, Hassan MR, Ruzzene M (2006) Modeling and testing of shape memory alloy chiral honeycomb structures. In: Smart structures and materials 2006: active materials: behavior and mechanics, vol 6170, p 61700W. International Society for Optics and Photonics

    Google Scholar 

  36. Hassan MR, Scarpa F, Ruzzene M, Mohammed NA (2008) Smart shape memory alloy chiral honeycomb. Mater Sci Eng A 481:654–657

    Article  Google Scholar 

  37. Bettini P, Airoldi A, Sala G, Landro L, Ruzzene M, Spadoni A (2010) Composite chiral structures for morphing airfoils: numerical analyses and development of a manufacturing process. Compos B Eng 41(2):133–147

    Article  Google Scholar 

  38. Miller W, Smith CW, Scarpa F, Evans KE (2010) Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos Sci Technol 70(7):1049–1056

    Article  Google Scholar 

  39. Abramovitch H, Burgard M, Edery-Azulay L, Evans KE, Hoffmeister M, Miller W, Scarpa F, Smith CW, Tee KF (2010) Smart tetrachiral and hexachiral honeycomb: Sensing and impact detection. Compos Sci Technol 70(7):1072–1079. https://doi.org/101016/jcompscitech200907017

  40. Chen YJ, Scarpa F, Liu YJ, Leng JS (2013) Elasticity of anti-tetrachiral anisotropic lattices. Int J Solids Struct 50(6):996–1004 https://doi.org/101016/jijsolstr201212004

  41. Bacigalupo A, De Bellis ML (2015) Auxetic anti-tetrachiral materials: equivalent elastic properties and frequency band-gaps. Compos Struct 131:530–544

    Article  Google Scholar 

  42. Airoldi A, Bettini P, Panichelli P, Oktem MF, Sala G (2015) Chiral topologies for composite morphing structures–part I: development of a chiral rib for deformable airfoils. Phys Status Solidi (b) 252(7):1435–1445

    Article  Google Scholar 

  43. Kepeng Q, Ruoyao W, Jihong Z, Zhang W (2020) Optimization design of chiral hexagonal honeycombs with prescribed elastic properties under large deformation. Chin J Aeronaut 33(3):902–909

    Article  Google Scholar 

  44. Mizzi L, Attard D, Gatt R, Pozniak AA, Wojciechowski KW, Grima JN (2015) Influence of translational disorder on the mechanical properties of hexachiral honeycomb systems. Compos B Eng 80:84–91

    Article  Google Scholar 

  45. Huang HH, Wong BL, Chou YC (2016) Design and properties of 3D-printed chiral auxetic metamaterials by reconfigurable connections. Phys Status Solidi (b) 253(8):1557–1564

    Article  Google Scholar 

  46. Jiang Y, Li Y (2018) Novel 3D-printed hybrid auxetic mechanical metamaterial with chirality-induced sequential cell opening mechanisms. Adv Eng Mater 20(2):1700744

    Article  Google Scholar 

  47. Ebrahimi H, Mousanezhad D, Nayeb-Hashemi H, Norato J, Vaziri A (2018) 3D cellular metamaterials with planar anti-chiral topology. Mater Des 145:226–231

    Article  Google Scholar 

  48. Günaydın K, Eren Z, Türkmen H S, Kazancı Z, Scarpa F (2017) Axial low velocity impact response of anisotropic anti-tetrachiral filling lattices. In: 7th international conference on mechanics and materials in design (No June: 1053-1060)

    Google Scholar 

  49. Li H, Ma Y, Wen W, Wu W, Lei H, Fang D (2017) In plane mechanical properties of tetrachiral and antitetrachiral hybrid metastructures. J Appl Mech 84(8)

    Google Scholar 

  50. Wu W, Tao Y, Xia Y, Chen J, Lei H, Sun L, Fang D (2017) Mechanical properties of hierarchical anti-tetrachiral metastructures. Extreme Mech Lett 16:18–32

    Article  Google Scholar 

  51. Wu W, Song X, Liang J, Xia R, Qian G, Fang D (2018) Mechanical properties of anti-tetrachiral auxetic stents. Compos Struct 185:381–392

    Article  Google Scholar 

  52. Fu M, Liu F, Hu L (2018) A novel category of 3D chiral material with negative Poisson’s ratio. Compos Sci Technol 160:11–118

    Article  Google Scholar 

  53. Farrugia PS, Gatt R, Grima JN (2019) A novel three-dimensional anti-tetrachiral honeycomb. Phys Status Solidi (b) 256(1):1800473

    Google Scholar 

  54. Ma C, Lei H, Liang J, Wu W, Wang T, Fang D (2018) Macroscopic mechanical response of chiral-type cylindrical metastructures under axial compression loading. Mater Des 158:198–212

    Article  Google Scholar 

  55. Novak N, Starčevič L, Vesenjak M, Ren Z (2019) Blast response study of the sandwich composite panels with 3D chiral auxetic core. Compos Struct 210:167–178

    Google Scholar 

  56. Ruan XL, Li JJ, Song XK, Zhou HJ, Yuan WX, Wu WW, Xia R (2018) Mechanical design of antichiral-reentrant hybrid intravascular stent. Int J Appl Mech 10(10):1850105

    Article  Google Scholar 

  57. Su XW, Zhu DM, Zheng C, Tomovic MM (2019) Mechanical properties of 65Mn chiral structure with three ligaments. Acta Mech Sin 35(1):88–98

    Article  Google Scholar 

  58. Attard D, Farrugia PS, Gatt R, Grima JN (2020) Starchirals–a novel class of auxetic hierarchal structures. Int J Mech Sci 179:105631

    Google Scholar 

  59. Lu X, Tan VBC, Tay TE (2020) Auxeticity of monoclinic tetrachiral honeycombs. Compos Struct 241:112067

    Google Scholar 

  60. Novak N, Vesenjak M, Tanaka S, Hokamoto K, Ren Z (2020) Compressive behaviour of chiral auxetic cellular structures at different strain rates. Int J Impact Eng 141:103566

    Google Scholar 

  61. Larsen UD, Sigmund O, Bouwstra S (1997) Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. Microelectromech Syst 6(2):99–106

    Article  Google Scholar 

  62. Qiao J, Chen CQ (2015) Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs. J Appl Mech Trans ASME 82(5):1–9. https://doi.org/101115/14030007

  63. Lim TC (2016) A 3D auxetic material based on intersecting double arrowheads. Phys Status Solidi (b) 253(7):1252–1260

    Article  Google Scholar 

  64. Wang Y, Wang L, Ma ZD, Wang T (2017) Finite element analysis of a jounce bumper with negative Poisson’s ratio structure. Proc Inst Mech Eng Part C J Mech Eng Sci 231(23):4374–4387. https://doi.org/101177/0954406216665415

  65. Ma L, Chen YL, Yang JS, Wang XT, Ma GL, Schmidt R, Schröder KU (2018) Modal characteristics and damping enhancement of carbon fiber composite auxetic double-arrow corrugated sandwich panels. Compos Struct 203:539–550. https://doi.org/101016/jcompstruct201807006

  66. Zhao X, Gao Q, Wang L, Yu Q, Ma Z D (2018) Dynamic crushing of double-arrowed auxetic structure under impact loading. Mater Des 160:527–537. https://doi.org/101016/jmatdes201809041

  67. Gao Q, Wang L, Zhou Z, Ma ZD, Wang C, Wang Y (2018) Theoretical, numerical, and experimental analysis of three-dimensional double-V honeycomb. Mater Des 139:380–391. https://doi.org/101016/jmatdes201711024

  68. Wang XT, Wang B, Wen ZH, Ma L (2018) Fabrication and mechanical properties of CFRP composite three-dimensional double arrowhead auxetic structures. Compos Sci Technol 164:92–102. https://doi.org/101016/jcompscitech201805014

  69. Gao Q, Ge C, Zhuang W, Wang L, Ma Z (2019) Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading. Mater Des 161:22–34. https://doi.org/101016/jmatdes201811013

  70. Gao Q, Liao WH, Wang L (2020) On the low-velocity impact responses of auxetic double arrowed honeycomb. Aerosp Sci Technol 98:105698. https://doi.org/101016/jast2020105698

  71. Chen G, Cheng Y (2020) Design and modelling of auxetic double arrowhead honeycomb core sandwich panels for performance improvement under air blast loading. J Sandwich Struct Mater 1099636220935563. https://doi.org/101177/1099636220935563

  72. Gu L, Xu Q, Zheng D, Zou H, Liu Z, Du Z (2020) Analysis of the mechanical properties of double arrowhead auxetic metamaterials under tension. Textile Res J 90(21–22):2411–2427. https://doi.org/101177/0040517520924850

  73. Grima JN, Gatt R, Alderson A, Evans KE (2005) On the potential of connected stars as auxetic systems. Mol Simul 31(13):925–935

    Article  Google Scholar 

  74. Carton MA, Ganter M (2019) Fast and simple printing of graded auxetic structures solid. Freeform fabrication symposium—an additive manufacturing conference: 2270–2279

    Google Scholar 

  75. Logakannan KP, Ramachandran V, Rengaswamy J, Gao Z, Ruan D (2020) Quasi-static and dynamic compression behaviors of a novel auxetic structure. Compos Struct 254:112853

    Google Scholar 

  76. Wei L, Zhao X, Yu Q, Zhu G (2021) Quasi-static axial compressive properties and energy absorption of star-triangular auxetic honeycomb. Compos Struct 267:113850

    Google Scholar 

  77. Xu N, Liu HT, An MR, Wang L (2021) Novel 2D star-shaped honeycombs with enhanced effective Young’s modulus and negative Poisson’s ratio. Extreme Mech Lett 43:101164

    Google Scholar 

  78. Elipe JCÁ, Lantada AD (2012) Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater Struct 21(10):105004

    Google Scholar 

  79. Bhullar SK, Hewage AM, Alderson A, Alderson K, Jun MB (2013) Influence of negative Poisson’s ratio on stent applications. Adv Mater 2(3):42–47. https://doi.org/1011648/jam2013020314

  80. Magalhaes R, Subramani P, Lisner T, Rana S, Ghiassi B, Fangueiro R, Lourenco PB (2016) Development, characterization and analysis of auxetic structures from braided composites and study the influence of material and structural parameters. Compos Part A Appl Sci Manuf 87:86–97. https://doi.org/101016/jcompositesa201604020

  81. Lim TC (2017) Analogies across auxetic models based on deformation mechanism. Phys Status Solidi—Rapid Res Lett 11(6). https://doi.org/101002/pssr201600440

  82. Wu W, Song X, Liang J, Xia R, Qian G, Fang D (2018) Mechanical properties of anti-tetrachiral auxetic stents. Compos Struct 185:381–392. https://doi.org/101016/jcompstruct201711048

  83. Bartlomiej B (2019) Dynamic properties of optimized auxetic structures. In: International conference on multifunctional cellular materials—book of abstracts: 64

    Google Scholar 

  84. Wang S, Li Z, Zhou KF, Tan QW (2019) The equivalent elastic parameters: a lozenge grid structure with negative Poisson’s ratio. IOP Conf Ser Mater Sci Eng 629(1). https://doi.org/101088/1757-899X/629/1/012037

  85. Attard D, Farrugia PS, Gatt R, Grima JN (2020) Starchirals–a novel class of auxetic hierarchal structures. Int J Mech Sci 179 https://doi.org/101016/jijmecsci2020105631

  86. Smith CW, Grima JN, Evans KE (2000) Novel mechanism for generating auxetic behaviour in reticulated foams: Missing rib foam model. Acta Mater 48(17) 4349–4356. https://doi.org/101016/S1359-6454(00)00269-X

  87. Liu Y, Hu H (2010) A review on auxetic structures and polymeric materials. Sci Res Essays 5(10):1052–1063

    Google Scholar 

  88. Farrugia PS, Gatt R, Zammit Lonardelli E, Grima JN, Evans KE (2019) Different deformation mechanisms leading to auxetic behavior exhibited by missing rib square grid structures. Phys Status Solidi (B) Basic Res 256(1):1–7. https://doi.org/101002/pssb201800186

  89. Meena K, Calius EP, Singamneni S (2019) An enhanced square-grid structure for additive manufacturing and improved auxetic responses Int J Mech Mater Des 15(2) 413–426. https://doi.org/101007/s10999-018-9423-8

  90. Zhang W, Zhao S, Scarpa F, Wang J, Sun R (2021) In-plane mechanical behavior of novel auxetic hybrid metamaterials. Thin-Walled Struct 159:107191. https://doi.org/101016/jtws2020107191

  91. Grima, JN, Alderson A, Evans KE (2004) Negative Poisson’s ratios from rotating rectangles. Comput Methods Sci Technol 10(2):137–145. https://doi.org/1012921/cmst20041002137-145

  92. Grima JN, Farrugia PS, Gatt R, Attard D (2008) On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys Status Solidi (B) Basic Res 245(3):521–529. https://doi.org/101002/pssb200777705

  93. Attard D, Grima JN (2012) A three-dimensional rotating rigid units network exhibiting negative Poisson’s ratios. Phys Status Solidi (B) Basic Res 249(7):1330–1338. https://doi.org/101002/pssb201084223

  94. Blakely KS, Toronjo A (2013) Articles of apparel with auxetic fabric. US Patent Active 1,413,725, 0, 20

    Google Scholar 

  95. Ali MN, Busfield JJC, Rehman IU (2014) Auxetic oesophageal stents: structure and mechanical properties. J Mater Sci Mater Med 25(2) 527–553. https://doi.org/101007/s10856-013-5067-2

  96. Attard D, Casha AR, Grima JN (2018) Filtration properties of auxetics with rotating rigid units. Materials 11(5) 21–26. https://doi.org/103390/ma11050725

  97. Slann A, White W, Scarpa F, Boba K, Farrow I (2015) Cellular plates with auxetic rectangular perforations. Phys Status Solidi (B) Basic Res 252(7) 1533–1539. https://doi.org/101002/pssb201451740

  98. Stojmanovski MLA, Formosa C, Grima JN, Chockalingam N, Gatt R, Gatt A (2017) On the use of auxetics in footwear: investigating the effect of padding and padding material on forefoot pressure in high heels. Phys Status Solidi (b) 254(12) 1700528

    Google Scholar 

  99. Li X, Fan R, Fan Z, Lu Y (2021) Programmable mechanical metamaterials based on hierarchical rotating structures. Int J Solids Struct 216:145–155

    Article  Google Scholar 

  100. Alderson A, Alderson KL, Attard D, Evans KE, Gatt R, Grima JN, Miller W, Ravirala N, Smith CW, Zied K (2010) Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol 70(7):1042–1048

    Article  Google Scholar 

  101. Gatt R, Attard D, Farrugia PS, Azzopardi KM, Mizzi L, Brincat JP, Grima JN (2013) A realistic generic model for anti-tetrachiral systems. Phys Status Solidi (b) 250(10):2012–2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, S., Vyavahare, S., Teraiya, S., Kootikuppala, J., Bogala, H. (2022). A State of the Art Review of Additively Manufactured Auxetic Structures. In: Dave, H.K., Dixit, U.S., Nedelcu, D. (eds) Recent Advances in Manufacturing Processes and Systems. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-7787-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7787-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7786-1

  • Online ISBN: 978-981-16-7787-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics