Skip to main content
Log in

Estimation of Natural Frequencies of Pipe–Fluid–Mass System by Using Causal Discovery Algorithm

  • Research Article-mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper employs a novel approach to investigating the dynamic behavior of a pipe conveying fluid and the relationship between the variables that influence it, based on causal inference. The pipe is modeled as a beam with Rayleigh beam theory and Hamilton’s variation principle is demonstrated to obtain the equation of motion. Concentrated mass at various locations is introduced using the Dirac delta function. The fluid in the pipe has no compression properties and no viscosity. The non-dimensional equations of motion of the pipe–fluid–mass system are achieved by using the approach of the fluid–structure interaction problem. The non-dimensional partial differential equations of motion are converted into matrix equations and the values of natural frequencies are obtained by using the Finite Differences Method. The relationship between the variables is investigated by causal discovery using the produced natural vibration frequencies dataset. Moreover, the Bayesian Network's probability distribution is fitted to the discretized data using the structural model created through causal discovery, resulting in trustworthy predictions without the need for sophisticated analysis. The findings highlighted that the proposed causal discovery can be an alternative practical way for real-time applications of pipe conveying fluid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ibrahim, R.A.: Overview of mechanics of pipes conveying fluids—Part I: fundamental studies. J. Press. Vessel Technol. (2010). https://doi.org/10.1115/1.4001271

    Article  Google Scholar 

  2. Hoppmann, W.H.: Forced lateral vibration of beam carrying a concentrated mass. J. Appl. Mech. Trans. ASME 19(3), 301–307 (1952)

    Article  Google Scholar 

  3. Maltbaek, J.C.: The influence of a concentrated mass on the free vibrations of a uniform beam. Int. J. Mech. Sci. 3, 197–218 (1961). https://doi.org/10.1016/0020-7403(61)90004-2

    Article  Google Scholar 

  4. Chen, Y.: On the vibration of a beam or rods carrying a concentrated mass. J. Appl. Mech. 30(2), 310–311 (1963). https://doi.org/10.1115/1.3636537

    Article  MATH  Google Scholar 

  5. Pan, H.H.: Transverse vibration of an Euler beam carrying a system of heavy bodies. ASME J. Appl. Mech. 32(2), 434–437 (1965). https://doi.org/10.1115/1.3625821

    Article  Google Scholar 

  6. Sato, K.; Saito, H.K.; Otomi, K.: The parametric response of a horizontal beam carrying a concentrated mass under gravity. ASME J. Appl. Mech. 45(3), 634–648 (1978). https://doi.org/10.1115/1.3424375

    Article  MATH  Google Scholar 

  7. Kang, M.G.: Effect of rotary inertia of concentrated masses on the natural vibration of fluid conveying pipes. J. Korean Nuclear Soc. 31(2), 202–213 (1999)

    Google Scholar 

  8. Kang, M.G.: The influence of rotary inertia of concentrated masses on the natural vibrations of a clamped–supported pipe conveying fluid. Nucl. Eng. Des. 196(3), 281–292 (2000). https://doi.org/10.1016/S0029-5493(99)00307-6

    Article  Google Scholar 

  9. Ghayesh, M.H.; Amabili, M.; Païdoussis, M.P.: Thermo-mechanical phase-shift determination in Coriolis mass-flowmeters with added masses. J. Fluids Struct. 34, 1–13 (2012). https://doi.org/10.1016/j.jfluidstructs.2012.05.003

    Article  Google Scholar 

  10. Varol, B.Y.; Sinir, G.B.: The dynamic analysis of a pipe with concentrated masses. In: International Symposium on Computing in Science and Engineering Proceedings 235, (2013)

  11. Zhang, T.; Ouyang, H.; Zhao, C.; Ding, Y.J.: Vibration analysis of a complex fluid-conveying piping system with general boundary conditions using the receptance method. Int. J. Press. Vessels Pip. 166, 84–93 (2018)

    Article  Google Scholar 

  12. ElNajjar, J.; Daneshmand, F.: Stability of horizontal and vertical pipes conveying fluid under the effects of additional point masses and springs. Ocean Eng. 206, 106943 (2020)

    Article  Google Scholar 

  13. Khudayarov, B.A.; Komilova, K.M.; Turaev, F.Z.; Aliyarov, J.A.: Numerical simulation of vibration of composite pipelines conveying fluids with account for lumped masses. Int. J. Press. Vessels Pip. 179, 104034 (2020)

    Article  Google Scholar 

  14. Sunil Kumar, H.S.; Anand, R.B.; Prabhakara, D.L.: Numerical investigation on vibration and stability of cutting fluid delivery viscoelastic conduits. Arab. J. Sci. Eng. 44(6), 5765–5778 (2019)

    Article  Google Scholar 

  15. Goyder H (2015) An experimental ınvestigation of added mass and damping in submerged pipework. ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers. V004T04A031

  16. Bhattacharya, B.; Solomatine, D.P.: Neural networks and M5 model trees in modelling water level—discharge relationship. Neurocomputing 63, 381–396 (2005)

    Article  Google Scholar 

  17. Najafzadeh, M.; Laucelli, D.B.; Zahiri, A.: Application of model tree and evolutionary polynomial regression for evaluation of sediment transport in pipes. KSCE J. Civ. Eng. 21(5), 1956–1963 (2017)

    Article  Google Scholar 

  18. Solomatine, D.P.; Xue, Y.: M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai River in China. J. Hydrol. Eng. 9(6), 491–501 (2004)

    Article  Google Scholar 

  19. Singh, K.K.; Pal, M.; Singh, V.P.: Estimation of mean annual flood in Indian catchments using backpropagation neural network and M5 model tree. Water Resour. Manag. 24(10), 2007–2019 (2010)

    Article  Google Scholar 

  20. Etemad-Shahidi, A.; Ghaemi, N.: Model tree approach for prediction of pile groups scour due to waves. Ocean Eng. 38(13), 1522–1527 (2011)

    Article  Google Scholar 

  21. Brunton, S.L.; Noack, B.R.; Koumoutsakos, P.: Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477–508 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kochkov, D.; Smith, J.A.; Alieva, A.; Wang, Q.; Brenner, M.P.; Hoyer, S.: Machine learning–accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. (2021). https://doi.org/10.1073/pnas.2101784118

    Article  Google Scholar 

  23. Gul, S.: Machine learning applications in drilling fluid engineering: a review. In: International Conference on Offshore Mechanics and Arctic Engineering, vol. 85208, p. V010T11A007. American Society of Mechanical Engineers (2021, June)

  24. Cheng, L.; Guo, R.; Moraffah, R.; Sheth, P.; Candan, K. S.; Liu, H.: Evaluation methods and measures for causal learning algorithms. In: IEEE Transactions on Artificial Intelligence, https://doi.org/10.1109/TAI.2022.3150264.

  25. Naser, M. Z.: Causality, causal discovery, and causal inference in structural engineering. arXiv preprint arXiv:2204.01543 (2022)

  26. Ombadi, M.; Nguyen, P.; Sorooshian, S.; Hsu, K.L.: Evaluation of methods for causal discovery in hydrometeorological systems. Water Resour. Res. 56(7), 34 (2020). https://doi.org/10.1029/2020WR027251

    Article  Google Scholar 

  27. Naser, M.Z.; Ciftcioglu, A.O.: Causal discovery and causal learning for fire resistance evaluation: incorporating domain knowledge. arXiv preprint arXiv:2204.05311 (2022)

  28. Sharma, A.; Mehrotra, R.: An information theoretic alternative to model a natural system using observational information alone. Water Resour. Res. 50(1), 650–660 (2014)

    Article  Google Scholar 

  29. Wang, Y.; Yang, J.; Chen, Y.; De Maeyer, P.; Li, Z.; Duan, W.: Detecting the causal effect of soil moisture on precipitation using convergent cross mapping. Sci. Rep. 8(1), 1–8 (2018)

    Google Scholar 

  30. Liu, R.; Misra, S.A.: Generalized machine learning workflow to visualize mechanical discontinuity. J. Pet. Sci. Eng. 210, 109963 (2022). https://doi.org/10.1016/j.petrol.2021.109963

    Article  Google Scholar 

  31. Jočković, M.; Radenković, G.; Nefovska-Danilović, M.; Baitsch, M.: Free vibration analysis of spatial Bernoulli–Euler and Rayleigh curved beams using isogeometric approach. Appl. Math. Model. 71, 152–172 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Han, S.M.; Benaroya, H.; Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999). https://doi.org/10.1006/jsvi.1999.2257

    Article  MATH  Google Scholar 

  33. Gouin, H.: Mathematical Methods of Analytical Mechanics. Elsevier, Amsterdam (2020)

    MATH  Google Scholar 

  34. Chang, J.R.; Lin, W.J.; Huang, C.J.; Choi, S.T.: Vibration and stability of an axially moving Rayleigh beam. Appl. Math. Model. 34(6), 1482–1497 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sınır, B.G.: The mathematical modeling of vibrations in marine pipelines. Doctoral dissertation. DEÜ Institute of Science (2004)

  36. Sınır, B.G.; Demi̇r DD,: The analysis of nonlinear vibrations of a pipe conveying an ideal fluid. Eur. J/. f Mech. B/Fluids 52, 38–44 (2015). https://doi.org/10.1016/j.euromechflu.2015.01.005

    Article  MathSciNet  Google Scholar 

  37. Li, B.; Fang, H.; Yang, K.; He, H.; Tan, P.; Wang, F.: Mechanical response and parametric sensitivity analyses of a drainage pipe under multiphysical coupling conditions. Complexity (2019). https://doi.org/10.1155/2019/3635621

    Article  Google Scholar 

  38. Zhang, T.; Ouyang, H.; Zhang YOand Lv BL,: Nonlinear dynamics of straight fluid-conveying pipes with general boundary conditions and additional springs and masses. Appl. Math. Model. 40(17), 7880–7900 (2016). https://doi.org/10.1016/j.apm.2016.03.050

    Article  MathSciNet  MATH  Google Scholar 

  39. Haberman, R.: Mathematical Models: Mechanical Vibrations. Population Dynamics. and Traffic Flow (Classics in Applied Mathematics), 1st edn. Prentice-Hall Inc., Hoboken (1998)

    MATH  Google Scholar 

  40. Jweeg, M.J.; Ntayeesh, T.J.: Dynamic analysis of pipes conveying fluid using analytical. numerical and experimental verification with the aid of smart materials. Int. J. Sci. Res. (2015). https://doi.org/10.13140/RG.2.1.5060.3922

    Article  Google Scholar 

  41. Meirovitch, L.: Analytical Methods in Vibration, 1st edn., p. 275–278. Pearson, London (1967)

    Google Scholar 

  42. Liu, R.; Misra, S.: Monitoring the propagation of mechanical discontinuity using data-driven causal discovery and supervised learning. Mech. Syst. Signal Process. 170, 108791 (2022)

    Article  Google Scholar 

  43. Koller, D.; Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  44. Tang, K.; Parsons, D.J.; Jude, S.: Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system. Reliab. Eng. Syst. Saf. 186, 24–36 (2019)

    Article  Google Scholar 

  45. Liu, M.; Wang, Z.; Zhou, Z.; Qu, Y.; Yu, Z.; Wei, Q.; Lu, L.: Vibration response of multi-span fluid-conveying pipe with multiple accessories under complex boundary conditions. Eur. J. Mech. A/Solids 72, 41–56 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Dagli, B.Y.; Ergut, A.: Dynamics of fluid conveying pipes using Rayleigh theory under non-classical boundary conditions. Eur. J. Mech. B/Fluids 77, 125–134 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hu, G.; Mohammadiun, S.; Gharahbagh, A.A.; Li, J.; Hewage, K.; Sadiq, R.: Selection of oil spill response method in Arctic offshore waters: a fuzzy decision tree based framework. Mar. Pollut. Bull. 161, 111705 (2020)

    Article  Google Scholar 

  48. Atoui, M.A.; Cohen, A.; Verron, S.; Kobi, A.: A single Bayesian network classifier for monitoring with unknown classes. Eng. Appl. Artif. Intell. 85, 681–690 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begum Yurdanur Dagli.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagli, B.Y., Ergut, A. & Özyüksel Çiftçioğlu, A. Estimation of Natural Frequencies of Pipe–Fluid–Mass System by Using Causal Discovery Algorithm. Arab J Sci Eng 48, 11713–11726 (2023). https://doi.org/10.1007/s13369-022-07549-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07549-z

Keywords

Navigation