Skip to main content
Log in

Numerical Investigation on Vibration and Stability of Cutting Fluid Delivery Viscoelastic Conduits

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A fluid-conveying cantilever pipe is likely to lose stability by flutter when the fluid is conveyed at certain critical velocity. In the present work, in order to avoid instability and reduce the possibility of unbounded vibrations, parametric studies and numerical investigations were carried out to fine-tune the fluid-conveying cantilever pipe by using a sliding mass and a sliding spring. To elucidate the flow mechanism, mathematical and classical formulations have been implemented using Hamilton’s principles and the numerical experimentation has been carried out using finite element method. Parametric studies on the critical velocity of fluid have been carried out in which various parameters such as the position and stiffness of the spring and position of the sliding mass were considered. The results revealed that when the discrete spring was provided in the first half of the conduit from the support, there was a significant improvement in the flutter velocity and providing only lumped mass with or without spring would not enhance the critical flutter velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

[C]:

Nonsymmetric damping matrix

[k]:

Nonsymmetric stiffness matrix

[M]:

Symmetric mass matrix

[\(\lambda \)]:

Transformation matrix

C :

Damping coefficient

d :

Nodal displacement

DOF:

Degree of freedom

E :

Young’s modulus

\({E}^{*}\) :

Viscous resistance coefficient

I :

Area moment of inertia

\({i}_{\mathrm{m}}\) :

Forward node of mass

Im ():

Imaginary part of ()

\({i}_{\mathrm{s}}\) :

Forward node of spring

k :

Spring stiffness

L :

Total length of pipe

\({L}_{\mathrm{m}}\) :

Position of concentrated mass (measured from the support)

\({L}_{\mathrm{s}}\) :

Position of spring measured from the support

M :

External sliding mass

\({m}_{\mathrm{f}}\) :

Mass of incompressible fluid per unit length

\({m}_{\mathrm{p} }\) :

Mass of pipe per unit length

N :

Shape function

R :

No. of elements

Re ():

Real part of ()

t :

Time

T :

Total kinetic energy

\(T_{\mathrm{F}}\) :

Total kinetic energy of the fluid

\(T_{\mathrm{F1}}\) :

Kinetic energy equivalent to axial component of velocity of fluid

\(T_{\mathrm{F2}}\) :

Kinetic energy equivalent to lateral velocity of pipe which carries fluid

\(T_{\mathrm{F3}}\) :

Kinetic energy equivalent to lateral component of velocity

\(T_{\mathrm{M} }\) :

Kinetic energy of the lumped mass

\(T_{\mathrm{p}}\) :

kinetic energy of entire pipe

u :

Nondimensional velocity of fluid

U :

Elastic potential energy of the pipe

\(U_{\mathrm{cr}}\) :

Nondimensional critical velocity

\(U_{\mathrm{s}}\) :

Strained energy stored in the spring

v :

Fluid velocity

W :

Work done by fluid force

\({W}_{\mathrm{c} }\) :

Work done by conservative component of the fluid force

X :

Amplitude of x(t)

\(\alpha \) :

Nondimensional stiffness of the discrete spring

\(\beta \) :

Mass of the fluid to mass of fluid + mass of pipe ratio

\(\gamma \) :

Structural damping ratio

\(\delta {W}_{\mathrm{id}}\) :

Virtual work done due to structural damping

\(\delta {W}_{\mathrm{nc}}\) :

Virtual work done by nonconservative component of the fluid force

\(\eta \) :

Nondimensional position of the mass

\(\lambda \) :

Eigen value

\(\xi \) :

Nondimensional position of the spring

\(\tau \) :

Period of oscillation, time

\(\psi \) :

Nondimensional ratio of concentrated mass to the mass of the pipe + fluid

\(\omega \) :

Nondimensional natural frequency

References

  1. Ezugwu, E.O.; Bonney, J.; Yamane, Y.: An overview of the machinability of aeroengine alloys. J. Mater. Process. Technol. 134, 233–253 (2003)

    Article  Google Scholar 

  2. Machado, A.R.; Wallbank, J.; Pashby, I.R.; Ezugwu, E.O.: Tool performance and chip control when machining Ti6A14V and inconel 901 using high pressure coolant supply. Mach. Sci. Technol. 2, 1–12 (1998)

    Article  Google Scholar 

  3. De Lacalle, L.N.L.; Pérez-Bilbatua, J.; Sánchez, J.A.; Llorente, J.I.; Gutiérrez, A.; Albóniga, J.: Using high pressure coolant in the drilling and turning of low machinability alloys. Int. J. Adv. Manuf. Technol. 16, 85–91 (2000)

    Article  Google Scholar 

  4. Hong, H.; Riga, A.T.; Cahoon, J.M.; Scott, C.G.: Machinability of steels and titanium alloys under lubrication. Wear 162–164, 34–39 (1993)

    Article  Google Scholar 

  5. Wang, Z.Y.; Rajurkar, K.P.; Fan, J.: Turning: Ti–6Al–4V alloy with cryogenic cooling. Trans. N. Am. Manuf. Res. Inst. SME 1, 3–8 (1996)

  6. Hong, S.Y.; Ding, Y.: Cooling approaches and cutting temperatures in cryogenic machining of Ti–6Al–4V. Int. J. Mach. Tools Manuf. 41, 1417–1437 (2001)

    Article  Google Scholar 

  7. Hong, S.Y.; Markus, I.; Jeong, W.C.: New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 41, 2245–2260 (2001)

    Article  Google Scholar 

  8. Timoshenko, S.P.; Gere, J.M.: Theory of Elastic Stability. McGraw-Hill, New York (1961)

    Google Scholar 

  9. Paıdoussis, M.P.; Li, G.X.: Pipes conveying fluid: A model dynamical problem. J. Fluids Struct. 7, 137–204 (1993)

    Article  Google Scholar 

  10. Herrmann, G.: Dynamics and stability of mechanical system with follower forces. NASA Contractor Report CR-1782 National Aeronautical and Space Administration (1971)

  11. Koiter, W.T.: Unrealistic follower forces. J. Sound Vib. 194, 636 (1996)

    Article  Google Scholar 

  12. Sugiyama, Y.; Langthjem, M.A.; Ryu, B.J.: Realistic follower forces. J. Sound Vib. 225, 779–782 (1999)

    Article  Google Scholar 

  13. Bolotin, V.V.: Dynamic instabilities in mechanics of structures. Appl. Mech. Rev. 52, R1–R9 (1999)

    Article  Google Scholar 

  14. Sugiyama, Y.; Sekiya, T.: Survey of the experimental studies of instability of elastic systems subjected to non-conservative forces. J. Jpn. Soc. Aeronaut. Space Sci. 19, 61–68 (1971)

    Google Scholar 

  15. Kuiper, G.L.; Metrikine, A.V.: Dynamic stability of a submerged, free-hanging riser conveying fluid. J. Sound Vib. 280, 1051–1065 (2005)

    Article  Google Scholar 

  16. D. Royalance.: Lecture note on engineering viscoelasticity. Department of Materials Science and Engineering, MIT, Cambridge. Available through I’Net (2001)

  17. Benjamin, T.B.: Dynamics of a system of articulated pipes conveying fluid. I. Experiments. Proc. R. Soc. A Math. Phys. Eng. Sci. 261, 457–486 (1961)

    MathSciNet  MATH  Google Scholar 

  18. Benjamin, T.B.: Dynamics of a system of articulated pipes conveying fluid. II. Experiments. Proc. R. Soc. A Math. Phys. Eng. Sci. 261, 487–499 (1961)

    MathSciNet  MATH  Google Scholar 

  19. Gregory, R.W.; Paidoussis, M.P.: Unstable oscillation of tubular cantilevers conveying fluid. I-Theory. Experiments. Proc. R. Soc. A Math. Phys. Eng. Sci. 293, 512–527 (1966)

    MATH  Google Scholar 

  20. Gregory, R.W.; Paidoussis, M.P.: Unstable oscillation of tubular cantilevers conveying fluid. II. Experiments. Proc. R. Soc. A Math. Phys. Eng. Sci. 293, 528–542 (1966)

    Google Scholar 

  21. Sallstrom, J.H.: Fluid-conveying beams in transverse vibrations. Doctoral dissertation, Division of Solid Mechanics, Chalmers University of Technology (1992)

  22. Paidoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow. Academic Press, London (1998)

    Google Scholar 

  23. Païdoussis, M.P.; Semler, C.: Non-linear dynamics of a fluid-conveying cantilevered pipe with a small mass attached at the free end. Int. J. Non-Linear Mech. 33, 15–32 (1998)

    Article  MATH  Google Scholar 

  24. Ryu, S.U.; Sugiyama, Y.; Ryu, B.J.: Eigenvalue branches and modes for flutter of cantilevered pipes conveying fluid. Comput. Struct. 80, 1231–1241 (2002)

    Article  Google Scholar 

  25. Fernández, M.Á.; Le Tallec, P.: Linear stability analysis in fluid–structure interaction with transpiration. Part II: numerical analysis and applications. Comput. Methods Appl. Mech. Eng. 192, 4837–4873 (2003)

    Article  MATH  Google Scholar 

  26. Sarkar, A.; Païdoussis, M.P.: A compact limit-cycle oscillation model of a cantilever conveying fluid. J. Fluids Struct. 17, 525–539 (2003)

    Article  Google Scholar 

  27. Wang, X.: Instability analysis of some fluid-structure interaction problems. Comput. Fluids. 32, 121–138 (2003)

    Article  MATH  Google Scholar 

  28. Sarkar, A.; Paidoussis, M.P.: A cantilever conveying fluid: coherent modes versus beam modes. Int. J. Non-Linear. Mech. 39, 467–481 (2004)

    Article  MATH  Google Scholar 

  29. Lin, Y.H.; Huang, R.C.; Chu, C.L.: Optimal modal vibration suppression of a fluid-conveying pipe with a divergent mode. J. Sound Vib. 271, 577–597 (2004)

    Article  Google Scholar 

  30. Païdoussis, M.P.; Sarkar, A.; Semler, C.: A horizontal fluid-conveying cantilever: spatial coherent structures, beam modes and jumps in stability diagram. J. Sound Vib. 280, 141–157 (2005)

    Article  Google Scholar 

  31. Zou, G.P.; Cheraghi, N.; Taheri, F.: Fluid-induced vibration of composite natural gas pipelines. Int. J. Solids Struct. 42, 1253–1268 (2005)

    Article  Google Scholar 

  32. Païdoussis, M.P.; Semler, C.; Wadham-Gagnon, M.: A reappraisal of why aspirating pipes do not flutter at infinitesimal flow. J. Fluids Struct. 20, 147–156 (2005)

    Article  Google Scholar 

  33. Païdoussis, M.P.; Semler, C.; Wadham-Gagnon, M.; Saaid, S.: Dynamics of cantilevered pipes conveying fluid. Part 2: dynamics of the system with intermediate spring support. J. Fluids Struct. 23, 569–587 (2007)

    Article  Google Scholar 

  34. Païdoussis, M.P.: The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across applied mechanics. J. Sound Vib. 310, 462–492 (2008)

    Article  Google Scholar 

  35. Païdoussis, M.P.; Luu, T.P.; Prabhakar, S.: Dynamics of a long tubular cantilever conveying fluid downwards, which then flows upwards around the cantilever as a confined annular flow. J. Fluids Struct. 24, 111–128 (2008)

    Article  Google Scholar 

  36. Wang, L.; Ni, Q.: A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid. Mech. Res. Commun. 36, 833–837 (2009)

    Article  MATH  Google Scholar 

  37. Hellum, A.; Mukherjee, R.; Hull, A.J.: Flutter instability of a fluid-conveying fluid-immersed pipe affixed to a rigid body. J. Fluids Struct. 27, 1086–1096 (2011)

    Article  Google Scholar 

  38. Rinaldi, S.; Païdoussis, M.P.: Theory and experiments on the dynamics of a free-clamped cylinder in confined axial air-flow. J. Fluids Struct. 28, 167–179 (2012)

    Article  Google Scholar 

  39. Giacobbi, D.B.; Rinaldi, S.; Semler, C.; Païdoussis, M.P.: The dynamics of a cantilevered pipe aspirating fluid studied by experimental, numerical and analytical methods. J. Fluids Struct. 30, 73–96 (2012)

    Article  Google Scholar 

  40. Zhang, T.; Ouyang, H.; Zhang, Y.O.; Lv, B.L.: Nonlinear dynamics of straight fluid-conveying pipes with general boundary conditions and additional springs and masses. Appl. Math. Model 40(17–18), 7880–7900 (2016)

    Article  MathSciNet  Google Scholar 

  41. Bahaadini, R.; Saidi, A.R.; Hosseini, M.: On dynamics of nanotubes conveying nanoflow. Int. J. Eng. Sci. 123, 181–196 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Paz, M.: Structural Dynamics: Theory and Computation, 2nd edn. Springer, Berlin (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunil Kumar, H.S., Anand, R.B. & Prabhakara, D.L. Numerical Investigation on Vibration and Stability of Cutting Fluid Delivery Viscoelastic Conduits. Arab J Sci Eng 44, 5765–5778 (2019). https://doi.org/10.1007/s13369-019-03723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03723-y

Keywords

Navigation