Skip to main content

Advertisement

Log in

Prediction on the Performance Parameters of a Variable Compression Ratio (VCR) Dual Fuel Diesel-Producer Gas CI Engine: An Experimental and Theoretical Approach

  • Research Article-mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In recent years, biomass fuelled engines have gathered major interest due to rapid depletion and rising price of conventional fuels. Biomass gasification has a better conversion efficiency compared to other conversion techniques. Also, Producer gas can be used directly in diesel engines without any modifications. In this study, the performance parameters of a variable compression ratio CI engine fuelled with diesel-producer gas combination derived from rice husk, coconut shell, and rubber shell have been experimentally and theoretically investigated. During experimentation, brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), brake specific energy consumption and biomass consumption (BMC) are obtained by varying compression ratio and brake power (BP). A new theoretical model based on the finite-time thermodynamics is developed and validated with experimental results. The experimental results show that rubber shell powered DF engine showed the maximum diesel savings of 48%. It is also observed that, among the three selected feedstock, the rubber shell-based dual fuel engine had the highest BTE of 19.80% followed by the coconut shell and rice husk as 19.44% and 19.13%, respectively. Similarly lowest BMC of 3.53 kg/h was observed for rubber shell driven engine. In addition, the rubber shell derived producer gas had a lower BSFC of 0.64 kg/kWh on dual fuel mode than rice husk and coconut shell. It is also predicted that the optimum BTE and diesel savings as 19.18% and 48% are obtained at the compression ratio and BP of 18 and 2.56 kW, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

VCR:

Variable compression ratio

CR:

Compression ratio

CI:

Compression ignition

PG:

Producer gas

IC:

Internal combustion

SI:

Spark ignition

BTE:

Brake thermal efficiency

BSFC:

Brake specific fuel consumption

BSEC:

Brake specific energy consumption

BMC:

Biomass consumption

BP:

Brake power

FTT:

Finite time thermodynamics

FC:

Fuel consumption

DS:

Diesel savings

HC:

Hydro carbon

CO:

Carbon monoxide

NO:

Nitrous oxide

CV:

Calorific value of fuel

3D:

Three dimensional

CFD:

Computational fluid dynamics

AAC:

Available area under cultivation

AY:

Average yield

RPR:

Residue to product ratio

GRP:

Gross residue potential

BTDC:

Before top dead centre

HP:

Horse power

PT:

Platinum resistance thermometer

SEC:

Specific energy consumption

BM:

Biomass

CR:

Compression ratio

d, D :

Diameter, m

C :

Specific heat, kJ/kg

m :

Mass flow rate, kg/s

Q :

Heat, kJ

N :

Speed, rpm

V :

Voltage

I :

Current

H :

Calorific value of fuel

q :

Error or uncertainty

E :

Engine capacity, kW

L :

Load, kW

B :

Blend percentage of PG, %

X :

Regression coefficients

P :

Effective power, kW

T :

Temperature, K

Z :

Friction constant, kPa

V :

Volume, m3

d:

Diesel

pg:

Producer gas

t:

Total

st:

Stoichiometric

t:

Total

f:

Fuel

e:

Electrical

th:

Thermal

ef:

Effective

m, n:

Carbon and hydrogen%

p:

Pressure

v:

Volume

in:

Input

out:

Output

a:

Air

l:

Loss

Φ:

Equivalence ratio

:

Efficiency

References

  1. Malakar, Y.: Evaluating the role of rural electrification in expanding people’s capabilities in India. Energy Policy 114, 492–498 (2018). https://doi.org/10.1016/j.enpol.2017.12.047

    Article  Google Scholar 

  2. Ayaburi, J.; Bazilian, M.; Kincer, J.; Moss, T.: Measuring “Reasonably Reliable” access to electricity services. Electr. J. (2020). https://doi.org/10.1016/j.tej.2020.106828

    Article  Google Scholar 

  3. Schäfer, M.; Kebir, N.; Neumann, K.: Research needs for meeting the challenge of decentralized energy supply in developing countries, Energy. Sustain. Dev. 15, 324–329 (2011). https://doi.org/10.1016/j.esd.2011.07.001

    Article  Google Scholar 

  4. Edwin, M.; Nair, M.S.; Sekhar, S.J.: Techno-economic modeling of stand-alone and hybrid renewable energy systems for thermal applications in isolated areas. Renew. Energy Syst. Model. Optim. Control. (2021). https://doi.org/10.1016/B978-0-12-820004-9.00013-9

    Article  Google Scholar 

  5. Edwin, M.; Sekhar, S.J.: Thermal performance of milk chilling units in remote villages working with the combination of biomass, biogas and solar energies. Energy 91, 842–851 (2015). https://doi.org/10.1016/j.energy.2015.08.103

    Article  Google Scholar 

  6. Das, S.; Kashyap, D.; Kalita, P.; Kulkarni, V.; Itaya, Y.: Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India. Renew. Sustain. Energy Rev. (2020). https://doi.org/10.1016/j.rser.2019.109485

    Article  Google Scholar 

  7. Sikarwar, V.S.; Zhao, M.; Fennell, P.S.; Shah, N.; Anthony, E.J.: Progress in biofuel production from gasification. Prog. Energy Combust. Sci. 61, 189–248 (2017). https://doi.org/10.1016/j.pecs.2017.04.001

    Article  Google Scholar 

  8. Jemila Percy, A.; Edwin, M.: Techno-economic studies on the variable compression ratio dual fuel diesel-producer gas CI engine utilizing different biomass feedstocks. Environ. Progress Sustain. Energy (2022). https://doi.org/10.1002/ep.14024

    Article  Google Scholar 

  9. Nabi, M.N.; Rahman, M.M.; Akhter, M.S.: Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions. Appl. Therm. Eng. 29, 2265–2270 (2009). https://doi.org/10.1016/j.applthermaleng.2008.11.009

    Article  Google Scholar 

  10. Sridhar, G.; Sridhar, H.V.; Dasappa, S.; Paul, P.J.; Rajan, N.K.S.; Mukunda, H.S.: Development of producer gas engines. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 219, 423–438 (2005). https://doi.org/10.1243/095440705X6596

    Article  Google Scholar 

  11. Mishra, S.; Upadhyay, R.K.: Review on biomass gasification: gasifiers, gasifying mediums, and operational parameters. Mater. Sci. Energy Technol. 4, 329–340 (2021). https://doi.org/10.1016/j.mset.2021.08.009

    Article  Google Scholar 

  12. Jemila Percy, A.; Edwin, M.: Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology. Energy 263, 1265685 (2023). https://doi.org/10.1016/j.energy.2022.125685

    Article  Google Scholar 

  13. Banapurmath, N.R.; Tewari, P.G.; Hosmath, R.S.: Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as injected fuels. Renew. Energy. 33, 2007–2018 (2008). https://doi.org/10.1016/j.renene.2007.11.017

    Article  Google Scholar 

  14. Suryawanshi, S.J.; Shewale, V.C.; Thakare, R.S.; Yarasu, R.B.: Parametric study of different biomass feedstocks used for gasification process of gasifier—a literature review. Biomass Convers. Biorefinery (2021). https://doi.org/10.1007/s13399-021-01805-2

    Article  Google Scholar 

  15. Lal, S.; Mohapatra, S.K.: The effect of compression ratio on the performance and emission characteristics of a dual fuel diesel engine using biomass derived producer gas. Appl. Therm. Eng. 119, 63–72 (2017). https://doi.org/10.1016/j.applthermaleng.2017.03.038

    Article  Google Scholar 

  16. Afzal, A.; Soudagar, M.E.M.; Belhocine, A.; Kareemullah, M.; Hossain, N.; Alshahrani, S.; Saleel, C.A.; Subbiah, R.; Qureshi, F.; Mujtaba, M.A.: Thermal performance of compression ignition engine using high content biodiesels: a comparative study with diesel fuel. Sustain 13, 7688 (2021). https://doi.org/10.3390/SU13147688

    Article  Google Scholar 

  17. Edwin, M.; Nair, M.S.; Joseph Sekhar, S.: A comprehensive review for power production and economic feasibility on hybrid energy systems for remote communities. Int. J. Ambient Energy 43, 1456–1468 (2022). https://doi.org/10.1080/01430750.2020.1712252

    Article  Google Scholar 

  18. Ruiz, J.A.; Juárez, M.C.; Morales, M.P.; Muñoz, P.; Mendívil, M.A.: Biomass gasification for electricity generation: review of current technology barriers. Renew. Sustain. Energy Rev. 18, 174–183 (2013). https://doi.org/10.1016/j.rser.2012.10.021

    Article  Google Scholar 

  19. Tarabet, L.; Loubar, K.; Lounici, M.S.; Khiari, K.; Belmrabet, T.; Tazerout, M.: Experimental investigation of di diesel engine operating with eucalyptus biodiesel/natural gas under dual fuel mode. Fuel 133, 129–138 (2014). https://doi.org/10.1016/j.fuel.2014.05.008

    Article  Google Scholar 

  20. Thangaiyan, A.K.; Mohamed Ibrahim, M.M.: Production of producer gas and its use as the supplementary fuel for SI engine. Biomass Convers. Biorefinery (2021). https://doi.org/10.1007/s13399-021-01542-6

    Article  Google Scholar 

  21. Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C.: Power generation using coir-pith and wood derived producer gas in diesel engines. Fuel Process. Technol. 87, 849–853 (2006). https://doi.org/10.1016/J.FUPROC.2005.06.003

    Article  Google Scholar 

  22. Bhattacharya, S.C.; Hla, S.S.; Pham, H.-L.: A study on a multi-stage hybrid gasiÿer-engine system. Biomass Bioenergy 21(6), 445–460 (2001)

    Article  Google Scholar 

  23. BenoWincy, W.; Edwin, M.; Joseph Sekhar, S.: Optimization of process parameters to implement biomass gasifier for drying high moisture paddy in reversible flatbed dryer. Energy 249, 123771 (2022). https://doi.org/10.1016/j.energy.2022.123771

    Article  Google Scholar 

  24. Singh, R.N.; Singh, S.P.; Pathak, B.S.: Extent of replacement of methyl ester of rice bran oil by producer gas in CI engine. Int. J. Energy Res. 31, 1545–1555 (2007). https://doi.org/10.1002/er.1311

    Article  Google Scholar 

  25. Singh, R.N.; Singh, S.P.; Pathak, B.S.: Investigations on operation of CI engine using producer gas and rice bran oil in mixed fuel mode. Renew. Energy. 32, 1565–1580 (2007). https://doi.org/10.1016/j.renene.2006.06.013

    Article  Google Scholar 

  26. Malik, A.; Mohapatra, S.K.: Power generation using cotton stalk-derived producer gas in diesel engines. Energy Sources Part A Recovery Util. Environ. Eff. 38, 2816–2822 (2016). https://doi.org/10.1080/15567036.2015.1111957

    Article  Google Scholar 

  27. Patra, T.K.; Sheth, P.N.: Biomass gasification models for downdraft gasifier: a state-of-the-art review. Renew. Sustain. Energy Rev. 50, 583–593 (2015). https://doi.org/10.1016/j.rser.2015.05.012

    Article  Google Scholar 

  28. De Robbio, R.; Cameretti, M.C.; Tuccillo, R.: Ignition and combustion modelling in a dual fuel diesel engine. Propuls. Power Res. 9, 116–131 (2020). https://doi.org/10.1016/j.jppr.2020.02.001

    Article  Google Scholar 

  29. Valera, H.; Kumar, D.; Singh, A.P.; Agarwal, A.K.: Modelling aspects for adaptation of alternative fuels in IC engines. Energy Environ. Sustain. (2020). https://doi.org/10.1007/978-981-15-0335-1_2

    Article  Google Scholar 

  30. Ge, Y.; Chen, L.; Sun, F.; Wu, C.: Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid. Int. J. Therm. Sci. 44, 506–511 (2005). https://doi.org/10.1016/j.ijthermalsci.2004.10.001

    Article  Google Scholar 

  31. Ge, Y.; Chen, L.; Sun, F.: Finite-time thermodynamic modeling and analysis for an irreversible Dual cycle. Math. Comput. Model. 50, 101–108 (2009). https://doi.org/10.1016/j.mcm.2009.04.009

    Article  MathSciNet  MATH  Google Scholar 

  32. Chrisben Sam, S.; Gurugnanam, B.: End point rate analysis and estimation along the southwest coast of Kanyakumari, Tamil Nadu, using geospatial techniques. Int. J. Environ. Sci. Technol. (2022). https://doi.org/10.1007/S13762-022-04374-7

    Article  Google Scholar 

  33. Sam, C.; Gurugnanam, B.: Coastal transgression and regression from 1980 to 2020 and shoreline forecasting for 2030 and 2040, using DSAS along the southern coastal tip of Peninsular India. Geod. Geodyn. 13, 585–594 (2022). https://doi.org/10.1016/J.GEOG.2022.04.004

    Article  Google Scholar 

  34. Edwin, M.; Joseph Sekhar, S.: Techno-economic studies on hybrid energy based cooling system for milk preservation in isolated regions. Energy Convers. Manag. 86, 1023–1030 (2014). https://doi.org/10.1016/j.enconman.2014.06.075

    Article  Google Scholar 

  35. Edwin, M.; Joseph Sekhar, S.: Thermo-economic assessment of hybrid renewable energy based cooling system for food preservation in hilly terrain. Renew. Energy 87, 493–500 (2016). https://doi.org/10.1016/j.renene.2015.10.056

    Article  Google Scholar 

  36. Deep Singh, A.; Gajera, B.; Sarma, A.K.: Appraising the availability of biomass residues in India and their bioenergy potential. Waste Manag. 152, 38–47 (2022). https://doi.org/10.1016/J.WASMAN.2022.08.001

    Article  Google Scholar 

  37. Shanmugapriya, E.V.; Samhitha, S.V.; Geetha, P.: A case study on the landuse pattern of Kanyakumari district using Gis. IOSR J. Appl. Geol. Geophys. 04, 36–41 (2016). https://doi.org/10.9790/0990-0404023641

    Article  Google Scholar 

  38. Vignesh, K.S.; Anandakumar, I.; Ranjan, R.; Borah, D.: Flood vulnerability assessment using an integrated approach of multi-criteria decision-making model and geospatial techniques. Model. Earth Syst. Environ. 7, 767–781 (2021). https://doi.org/10.1007/s40808-020-00997-2

    Article  Google Scholar 

  39. Mboumboue, E.; Njomo, D.: Biomass resources assessment and bioenergy generation for a clean and sustainable development in Cameroon. Biomass Bioenergy 118, 16–23 (2018). https://doi.org/10.1016/J.BIOMBIOE.2018.08.002

    Article  Google Scholar 

  40. Ciria, P.; Barro, R.: Biomass Resource Assessment. Elsevier, Amsterdam (2016) https://doi.org/10.1016/B978-1-78242-366-9.00003-4

    Book  Google Scholar 

  41. Prabhu, A.V.; Avinash, A.; Brindhadevi, K.; Pugazhendhi, A.: Performance and emission evaluation of dual fuel CI engine using preheated biogas-air mixture. Sci. Total Environ. (2021). https://doi.org/10.1016/j.scitotenv.2020.142389

    Article  Google Scholar 

  42. Razmi-Ishak, M.; Abu-Bakar, A.R.; Belhocine, A.; Mohd-Taib, J.; Wan-Omar, W.Z.: Brake torque analysis of fully mechanical parking brake system: Theoretical and experimental approach. Ing. Investig. Tecnol. 19, 37–49 (2018). https://doi.org/10.22201/FI.25940732E.2018.19N1.004

    Article  Google Scholar 

  43. Ramos Da Costa, Y.J.; Barbosa De Lima, A.G.; BezerraFilho, C.R.; De Araujo Lima, L.: Energetic and exergetic analyses of a dual-fuel diesel engine. Renew. Sustain. Energy Rev. 16, 4651–4660 (2012). https://doi.org/10.1016/j.rser.2012.04.013

    Article  Google Scholar 

  44. Hiremath, S.S.; Khandal, S.V.; Banapurmath, N.R.; Math, V.B.; Gaitonde, V.N.: Comparative analysis of performance of dual fuel (DF) and homogeneous charge compression ignition (HCCI) engines fuelled with honne oil methyl ester (HOME) and compressed natural gas (CNG). Fuel 196, 134–143 (2017). https://doi.org/10.1016/j.fuel.2017.01.089

    Article  Google Scholar 

  45. Gonca, G.; Dobrucali, E.: Theoretical and experimental study on the performance of a diesel engine fueled with diesel-biodiesel blends. Renew. Energy. 93, 658–666 (2016). https://doi.org/10.1016/j.renene.2016.03.037

    Article  Google Scholar 

  46. Sharma, M.; Kaushal, R.: Performance and emission analysis of a dual fuel variable compression ratio (VCR) CI engine utilizing producer gas derived from walnut shells. Energy (2020). https://doi.org/10.1016/j.energy.2019.116725

    Article  Google Scholar 

  47. Zhao, Y.; Chen, J.: Performance analysis of an irreversible Miller heat engine and its optimum criteria Applied. Therm. Eng. 27, 2051–2058 (2007). https://doi.org/10.1016/j.applthermaleng.2006.12.002

    Article  Google Scholar 

  48. Vallero, D.A.: Thermal reactions. In: Air Pollution Calculations, pp. 207–218. Elsevier, Amsterdam (2019). https://doi.org/10.1016/b978-0-12-814934-8.00009-0

    Chapter  Google Scholar 

  49. Sharma, M.; Kaushal, R.: Performance and exhaust emission analysis of a variable compression ratio (VCR) dual fuel CI engine fuelled with producer gas generated from pistachio shells. Fuel (2021). https://doi.org/10.1016/j.fuel.2020.118924

    Article  Google Scholar 

  50. Leibbrandt, N.H.; Aboyade, A.O.; Knoetze, J.H.; Görgens, J.F.: Process efficiency of biofuel production via gasification and Fischer-Tropsch synthesis. Fuel 109, 484–492 (2013). https://doi.org/10.1016/j.fuel.2013.03.013

    Article  Google Scholar 

  51. Singh, J.; Singh, S.; Mohapatra, S.K.: Production of syngas from agricultural residue as a renewable fuel and its sustainable use in dual-fuel compression ignition engine to investigate performance, emission, and noise characteristics. Energy Sources Part A Recover. Util. Environ. Eff. 42, 41–55 (2020). https://doi.org/10.1080/15567036.2019.1587053

    Article  Google Scholar 

  52. Prasad, G.A.; Murugan, P.C.; Wincy, W.B.; Sekhar, S.J.: Response surface methodology to predict the performance and emission characteristics of gas-diesel engine working on producer gases of non-uniform calorific values. Energy (2021). https://doi.org/10.1016/J.ENERGY.2021.121225

    Article  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

AJP: Investigation, Data curation, Software, Methodology, Formal analysis, Validation. ME: Supervision, Investigation, Methodology, Resources, Conceptualization, Formal analysis, Writing—review and editing.

Corresponding author

Correspondence to M. Edwin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Percy, A.J., Edwin, M. Prediction on the Performance Parameters of a Variable Compression Ratio (VCR) Dual Fuel Diesel-Producer Gas CI Engine: An Experimental and Theoretical Approach. Arab J Sci Eng 48, 11559–11576 (2023). https://doi.org/10.1007/s13369-022-07514-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07514-w

Keywords

Navigation