Skip to main content
Log in

Composition Optimization of Iron-Nickel-Nanographite Particles for Tuning the Electromagnetic Parameters of Silicone Rubber Composites

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current study investigates iron (Fe)-nickel (Ni)-nanographite (NG) / silicone rubber composites for improved microwave absorption in 8–18 GHz range. Fe–Ni particles were produced in three different ratios (50:50, 60:40, and 75:25) using high-energy planetary ball mill. NG was also prepared from graphite using wet milling. The Fe–Ni combinations were then ball milled with NG at 75:25 ratio (Fe–Ni: NG) and coded as (Fe0.75Ni0.25)0.75NG0.25, (Fe0.6Ni0.4)0.75NG0.25, and (Fe0.5Ni0.5)0.75NG0.25. These hybrid nanoparticles were investigated for their structural and morphological properties. The thermomechanical, environmental and electromagnetic properties of silicone rubber composites with these nanoparticles (20% w/w) were studied. Around 60% improvement in tensile strength with 40% more elongation is achieved compared to the pure silicone rubber samples. (Fe0.5Ni0.5)0.75NG0.25 based sample shows good dynamic mechanical properties with almost 4 times increase in storage modulus and twice increase in loss modulus from − 20 °C to room temperature. The conducting nature of hybrid nanoparticles helps to reduce the electrical impedance up to two orders (from 104 to 102 Ω). The composites with (Fe0.75Ni0.25)0.75NG0.25 have excellent mechanical characteristics and good dielectric and magnetic loss while the electromagnetic characteristics of (Fe0.6Ni0.4)0.75NG0.25 based composites have shown greater broad-spectrum absorption in 8–18 GHz range. Real and imaginary permittivity values are up to 50 and 8, respectively while real and imaginary permeability values are around 1 and 0.5, respectively. The results indicate that these flexible polymer nanocomposite sheets are a viable contender as microwave absorbers in a variety of stealth applications over wide range environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jayalakshmi, C.G.; Inamdar, A.; Anand, A.; Kandasubramanian, B.: Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J. Appl. Polym. Sci. 136(14), 47241 (2019). https://doi.org/10.1002/app.47241

    Article  Google Scholar 

  2. Ahmad, H.; Tariq, A.; Shehzad, A.; Faheem, M.S.; Shafiq, M.; Rashid, I.A.; Afzal, A.; Munir, A.; Riaz, M.T.; Haider, H.T.; Afzal, A.: Stealth technology: methods and composite materials—a review. Polym. Compos. 40(12), 4457–4472 (2019). https://doi.org/10.1002/pc.25311

    Article  Google Scholar 

  3. Zou, H.; Li, S.; Zhang, L.; Yan, S.; Wu, H.; Zhang, S.; Tian, M.: Determining factors for high performance silicone rubber microwave absorbing materials. J. Magn. Magn. Mater. 323(12), 1643–1651 (2011). https://doi.org/10.1016/j.jmmm.2011.01.028

    Article  Google Scholar 

  4. Chen, C.Y.; Pu, N.W.; Liu, Y.M.; Huang, S.Y.; Wu, C.H.; Ger, M.D.; Gong, Y.J.; Chou, Y.C.: Remarkable microwave absorption performance of graphene at a very low loading ratio. Compos. B Eng. 114, 395–403 (2017). https://doi.org/10.1016/j.compositesb.2017.02.016

    Article  Google Scholar 

  5. Zhang, B.; Du, Y.; Zhang, P.; Zhao, H.; Kang, L.; Han, X.; Xu, P.: Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 130(3), 1909–1916 (2013). https://doi.org/10.1002/app.39332

    Article  Google Scholar 

  6. Bhattacharyya, A.; Joshi, M.: Functional properties of microwave absorbent nanocomposite coatings based on thermoplastic polyurethane based and hybrid carbon based nanofillers. Polym. Adv. Technol. 23(6), 975–983 (2012). https://doi.org/10.1016/j.compositesb.2017.02.016

    Article  Google Scholar 

  7. Wei, H.; Zhang, Z.; Hussain, G.; Zhou, L.; Li, Q.; Ostrikov, K.K.: Techniques to enhance magnetic permeability in microwave absorbing materials. Appl. Mater. Today 19, 100596 (2020). https://doi.org/10.1016/j.apmt.2020.100596

    Article  Google Scholar 

  8. Zhang, M.; Jiang, Z.; Si, H.; Zhang, X.; Liu, C.; Gong, C.; Zhang, Y.; Zhang, J.: Heterogeneous iron–nickel compound/RGO composites with tunable microwave absorption frequency and ultralow filler loading. Phys. Chem. Chem. Phys. 22(16), 8639–8646 (2020). https://doi.org/10.1039/D°CP00290A

    Article  Google Scholar 

  9. Jani, R.K.; Saini, L.; Vadera, S.R.: Size dependent percolation threshold and microwave absorption properties in nano carbon black/silicon rubber composites. J. Appl. Phys. 131(4), 044101 (2022). https://doi.org/10.1063/5.0071517

    Article  Google Scholar 

  10. Park, K.Y.; Han, J.H.; Lee, S.B.; Kim, J.B.; Yi, J.W.; Lee, S.K.: Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles. Compos. Sci. Technol. 69(7–8), 1271–1278 (2009). https://doi.org/10.1016/j.compscitech.2009.02.033

    Article  Google Scholar 

  11. Prakash, A.; Srivastava, A.K.; Pandey, M.K.; Nagarajan, R.; Bhattacharyya, A.: Influence of iron and nickel on the microwave absorption and other functional properties of nanographite-based nanocomposite paints. J. Coat. Technol. Res. 18(6), 1691–1698 (2021). https://doi.org/10.1007/s11998-021-00531-8

    Article  Google Scholar 

  12. Prakash, A.; Narayanan, S.; Thangavelu, K.; Srivastava, A.K.; Pandey, M.K.; Nagarajan, R.; Bhattacharyya, A.: Functional properties of zinc-nanographite based nanocomposite paints for 2–9 GHz microwave absorption. J. Coat. Technol. Res. (2021). https://doi.org/10.1007/s11998-021-00484-y

    Article  Google Scholar 

  13. Roshan, M.J.; Jeevika, A.; Bhattacharyya, A.; Shankaran, D.R.: One-pot fabrication and characterization of graphene/PMMA composite flexible films. Mater. Res. Bullet. 105, 133–141 (2018). https://doi.org/10.1016/j.materresbull.2018.04.034

    Article  Google Scholar 

  14. Nasir, A.; Kausar, A.; Younus, A.: Polymer/graphite nanocomposites: physical features, fabrication and current relevance. Polym. Plast. Technol. Eng. 54(7), 750–770 (2015). https://doi.org/10.1080/03602559.2014.979503

    Article  Google Scholar 

  15. Tientong, J.; Garcia, S.; Thurber, C.R.; Golden, T.D.: Synthesis of nickel and nickel hydroxide nanopowders by simplified chemical reduction. J. Nanotechnol. (2014). https://doi.org/10.1155/2014/193162

    Article  Google Scholar 

  16. Bhattacharyya, A.; Joshi, M.: Synthesis of hybrid nanographite particles using fluidized bed system. J. Solid State Electrochem. 15(9), 1943–1952 (2011). https://doi.org/10.1007/s10008-010-1215-5

    Article  Google Scholar 

  17. Liu, J.; Feng, Y.; Qiu, T.: Synthesis, characterization, and microwave absorption properties of Fe–40 wt% Ni alloy prepared by mechanical alloying and annealing. J. Magn. Magn. Mater. 323(23), 3071–3076 (2011). https://doi.org/10.1016/j.jmmm.2011.06.073

    Article  Google Scholar 

  18. Chung, D.D.L.; Xi, X.: A review of the colossal permittivity of electronic conductors, specifically metals and carbons. Mater. Res. Bull. 148, 111654 (2022). https://doi.org/10.1016/j.materresbull.2021.111654

    Article  Google Scholar 

  19. Ziraki, S.; Zebarjad, S.M.; Hadianfard, M.J.: A study on the tensile properties of silicone rubber/polypropylene fibers/silica hybrid nanocomposites. J. Mech. Behav. Biomed. Mater. 57, 289–296 (2016). https://doi.org/10.1016/j.jmbbm.2016.01.019

    Article  Google Scholar 

  20. Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater Sci. 90, 75–127 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  Google Scholar 

  21. Xu, Y.L.; Uddin, A.; Estevez, D.; Luo, Y.; Peng, H.X.; Qin, F.X.: Lightweight microwire/graphene/silicone rubber composites for efficient electromagnetic interference shielding and low microwave reflectivity. Compos. Sci. Technol. 189, 108022 (2020). https://doi.org/10.1016/j.compscitech.2020.108022

    Article  Google Scholar 

  22. Xu, Q.; Pang, M.; Zhu, L.; Zhang, Y.; Feng, S.: Mechanical properties of silicone rubber composed of diverse vinyl content silicone gums blending. Mater. Des. 31(9), 4083–4087 (2010). https://doi.org/10.1016/j.matdes.2010.04.052

    Article  Google Scholar 

  23. Senthilkumar, R.; Sarathi, T.; Venkataraman, K.K.; Bhattacharyya, A.: Piezoresistive nanocomposite films for foot strike data monitoring. Sens. Actuat. A Phys. (2018). https://doi.org/10.1016/j.sna.2018.10.022

    Article  Google Scholar 

  24. Xu, Y.; Zhang, D.; Cai, J.; Yuan, L.; Zhang, W.: Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet. J. Magn. Magn. Mater. 327, 82–86 (2013). https://doi.org/10.1016/j.jmmm.2012.09.045

    Article  Google Scholar 

  25. Brzuszek, K.; Janutka, A.: High-frequency magnetic response of superferromagnetic nanocomposites. J. Magn. Magn. Mater. 543, 168608 (2022). https://doi.org/10.1016/j.jmmm.2021.168608

    Article  Google Scholar 

Download references

Acknowledgements

Authors like to express their deep gratitude to The Directorate of Extramural Research and Intellectual Property Rights, Defence Research and Development Organization (DRDO) (ERIP/ER/1502251/M/01/1674), Govt. of India for the financial support and the management of PSG Institutions for their laboratory supports to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Bhattacharyya.

Ethics declarations

Conflicts of Interest

The authors declare that they no conflict of interest. None of the authors have a conflict of interests including direct or indirect financial relations with any of the trademarks and companies mentioned in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, A., Srivastava, A.K., Sivasubramanian, R. et al. Composition Optimization of Iron-Nickel-Nanographite Particles for Tuning the Electromagnetic Parameters of Silicone Rubber Composites. Arab J Sci Eng 48, 8849–8860 (2023). https://doi.org/10.1007/s13369-022-07483-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07483-0

Keywords

Navigation