Skip to main content
Log in

Preparation and Characterization of MWCNT/Zn0.25Co0.75Fe2O4 Nanocomposite and Investigation of Its Microwave Absorption Properties at X-Band Frequency Using Silicone Rubber Polymeric Matrix

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Microwave absorption has attracted considerable attention in the last decade. Absorbing materials are an essential component for the reduction of incident microwave by absorption or by the use of destructive interference. Various factors such as permittivity and permeability affect the attenuation of microwaves by absorbers. From this observation, in this research an absorbing material has been developed to improve these properties using multiwall carbon nanotubes (MWCNTs) as a conductive polymer and Zn0.25Co0.75Fe2O4 as magnetic nanoparticles. For better dispersion in the reaction medium, consequently enhancing the interfacial polarization, MWCNTs were functionalized with carboxylic acid groups. The functionalized MWCNTs were then decorated with Zn0.25Co0.75Fe2O4 magnetic nanoparticles through sonochemical and solvothermal complementary methods in ethylene glycol as solvent. Zn0.25Co0.75Fe2O4 nanoparticles and MWCNT/Zn0.25Co0.75Fe2O4 nanocomposite were identified by diffuse reflection spectroscopy (DRS), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD) and vibrating sample magnetometer (VSM). Investigation of microwave absorption properties was performed by vector network analyzer (VNA). Finally, MWCNT/Zn0.25Co0.75Fe2O4 nanocomposite was blended in silicone rubber as a polymeric matrix to investigate its microwave absorption properties. The MWCNT/Zn0.25Co0.75Fe2O4/silicone rubber nanocomposite absorbed 79.08 dB at 10.5 GHz with a thickness of 2.4 mm, having effective bandwidth (RL < −20 dB) more than 2.7 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S.S. Afghahi, R. Peymanfar, S. Javanshir, Y. Atassi, and M. Jafarian, J. Magn. Magn. Mater. 423, 152 (2017).

    Article  Google Scholar 

  2. R. Peymanfar, A. Javidan, and S. Javanshir, J. Appl. Polym. Sci. 134, 30 (2017).

    Article  Google Scholar 

  3. X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, and N. Mahmood, ACS Appl. Mater. Interfaces. 8, 6101 (2016).

    Article  Google Scholar 

  4. C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, and X. Han, ACS Appl. Mater. Interfaces. 7, 20090 (2015).

    Article  Google Scholar 

  5. M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, and Q. Zhang, Ind. Eng. Chem. Res. 55, 6263 (2016).

    Article  Google Scholar 

  6. Y. Li, M. Yu, P. Yang, and J. Fu, Ind. Eng. Chem. Res. 56, 8872 (2017).

    Article  Google Scholar 

  7. J. Rezania and H. Rahimi, J. Compos. Mater. 51, 2263 (2017).

    Article  Google Scholar 

  8. B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, and J. Yuan, Adv. Mat. 26, 3484 (2014).

    Article  Google Scholar 

  9. M. Lu, X. Wang, W. Cao, J. Yuan, and M. Cao, Nanotechnology 27, 065702 (2015).

    Article  Google Scholar 

  10. M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, and J. Yuan, Carbon 48, 788 (2010).

    Article  Google Scholar 

  11. K.-Y. Park, S.-E. Lee, C.-G. Kim, and J.-H. Han, Compos. Struct. 81, 401 (2007).

    Article  Google Scholar 

  12. S. Rul, F. Lefèvre-Schlick, E. Capria, C. Laurent, and A. Peigney, Acta Mater. 52, 1061 (2004).

    Article  Google Scholar 

  13. R. Peymanfar and S. Javanshir, J. Magn. Magn. Mater. 432, 444 (2017).

    Article  Google Scholar 

  14. Y.-W. Nam, J.-H. Choi, J.-M. Huh, W.-J. Lee, and C.-G. Kim, J. Compos. Mater. 52, 1413 (2017).

    Article  Google Scholar 

  15. X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, and M.S. Cao, ACS Appl. Mater. Interfaces. 16, 7471 (2014).

    Article  Google Scholar 

  16. Y.-F. Pan, G.-S. Wang, L. Liu, L. Guo, and S.-H. Yu, Nano Res. 10, 284 (2017).

    Article  Google Scholar 

  17. J. Zhao, J. Yu, Y. Xie, Z. Le, X. Hong, S. Ci, J. Chen, X. Qing, W. Xie, and Z. Wen, Sci. Rep. 6, 20496 (2016).

    Article  Google Scholar 

  18. M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou, H.B. Jin, W.Z. Wang, J. Yuan, and M.S. Cao, J. Mater. Chem. 2, 10540 (2014).

    Article  Google Scholar 

  19. H. Nikmanesh, M. Moradi, G.H. Bordbar, and R.S. Alam, Ceram. Int. 42, 14342 (2016).

    Article  Google Scholar 

  20. H.Y. Atay and E. Çelik, J. Compos. Mater. 49, 2469 (2015).

    Article  Google Scholar 

  21. H. Soleimani, Z. Abbas, N. Yahya, H. Soleimani, and M.Y. Ghotbi, J. Compos. Mater. 46, 1497 (2012).

    Article  Google Scholar 

  22. D. Moitra, S. Dhole, B.K. Ghosh, M. Chandel, R.K. Jani, M.K. Patra, S.R. Vadera, and N.N. Ghosh, J. Phys. Chem. 121, 21290 (2017).

    Article  Google Scholar 

  23. A.F. Abdulaziz, K.I. Khaleel, N.A. Bakr, and J. Tikrit, Pure Sci. 16, 216 (2011).

    Google Scholar 

  24. R.S. Yadav, J. Havlica, M. Hnatko, P. Šajgalík, C. Alexander, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, and M. Zmrzlý, J. Magn. Magn. Mater. 378, 190 (2015).

    Article  Google Scholar 

  25. G. Sathishkumar, C. Venkataraju, and K. Sivakumar, J. Mater. Sci.: Mater. Electron. 22, 1715 (2011).

    Google Scholar 

  26. A. Tawfik, I. Hamada, and O. Hemeda, J. Magn. Magn. Mater. 250, 77 (2002).

    Article  Google Scholar 

  27. M. El-Saadawy, J. Adv. Ceram. 1, 144 (2012).

    Article  Google Scholar 

  28. M. Akram and M. Anis-ur-Rehman, J. Electron. Mater. 43, 485 (2014).

    Article  Google Scholar 

  29. M.T. Jamil, J. Ahmad, S.H. Bukhari, T. Sultan, M.Y. Akhter, H. Ahmad, and G. Murtaza, J. Ovonic Res. 13, 45 (2017).

    Google Scholar 

  30. X. Wang, J. Fan, F. Qian, and Y. Min, RSC Adv. 6, 49966 (2016).

    Article  Google Scholar 

  31. X.J. Zhang, S. Li, S.W. Wang, Z.J. Yin, J.Q. Zhu, A.P. Guo, G.S. Wang, P.G. Yin, and L. Guo, J. Phys. Chem. 120, 22019 (2016).

    Google Scholar 

  32. R. Peymanfar and M. Rahmanisaghieh, Mater. Res. Express 5, 105012 (2018).

    Article  Google Scholar 

  33. G. Li, Y. Guo, X. Sun, T. Wang, J. Zhou, and J. He, Phys. Chem. Solids 73, 1268 (2012).

    Article  Google Scholar 

  34. B. Quan, X. Liang, G. Ji, J. Lv, S. Dai, G. Xu, and Y. Du, Carbon 129, 310 (2018).

    Article  Google Scholar 

  35. Y. Li, Y. Zhao, X. Lu, Y. Zhu, and L. Jiang, Nano Res. 9, 2034 (2016).

    Article  Google Scholar 

  36. B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, and J. Yuan, Carbon 65, 124 (2013).

    Article  Google Scholar 

  37. F. Movassagh-Alanagh, A. Bordbar-Khiabani, and A. Ahangari-Asl, Compos. Sci. Technol. 150, 65 (2017).

    Article  Google Scholar 

  38. S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, Nanoscale 10, 6945 (2018).

    Article  Google Scholar 

  39. W.-L. Song, M.-S. Cao, Z.-L. Hou, X.-Y. Fang, X.-L. Shi, and J. Yuan, Appl. Phys. Lett. 94, 233110 (2009).

    Article  Google Scholar 

  40. M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, and J. Yuan, ACS Appl. Mater. Interfaces. 4, 6949 (2012).

    Article  Google Scholar 

  41. W. She, H. Bi, Z. Wen, Q. Liu, X. Zhao, J. Zhang, and R. Che, ACS Appl. Mater. Interfaces. 8, 9782 (2016).

    Article  Google Scholar 

  42. R. Shu, W. Li, X. Zhou, D. Tian, G. Zhang, Y. Gan, J. Shi, and J. He, J. Alloys Compd. 743, 163 (2018).

    Article  Google Scholar 

  43. M. Almasi-Kashi, M.H. Mokarian, and S. Alikhanzadeh-Arani, J. Alloys Compd. 742, 413 (2018).

    Article  Google Scholar 

  44. X. Lyu, Z. Yang, M. Li, L. Yang, J. Liu, and R. Wu, J. Phys. Chem. Solids 126, 143 (2018).

    Google Scholar 

  45. W.B. Weir, Proc. IEEE 62, 33 (1974).

    Article  Google Scholar 

  46. M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, and J. Yuan, Small 14, 1800987 (2018).

    Article  Google Scholar 

  47. W.-Q. Cao, X.-X. Wang, J. Yuan, W.-Z. Wang, and M.-S. Cao, J. Mater. Chem. 3, 10017 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrzad Javanshir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peymanfar, R., Javanshir, S., Naimi-Jamal, M.R. et al. Preparation and Characterization of MWCNT/Zn0.25Co0.75Fe2O4 Nanocomposite and Investigation of Its Microwave Absorption Properties at X-Band Frequency Using Silicone Rubber Polymeric Matrix. J. Electron. Mater. 48, 3086–3095 (2019). https://doi.org/10.1007/s11664-019-07065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07065-1

Keywords

Navigation