Skip to main content

Advertisement

Log in

Energy Management of an Active Distribution Network Considering Correlation Between Uncertain Input Variables

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper deals with the probabilistic energy management of an active distribution network in the presence of plug-in hybrid electric vehicle loads and power electronic devices like the soft open point and the smart transformer. The energy management scheme aims to simultaneously reduce the average voltage deviation, improve voltage stability, and maximize the daily profit. The proposed energy management measures involve simultaneous optimal scheduling of the soft open point, the smart transformer, the battery energy storage system, and an optimal power procurement from renewable sources. A probabilistic method models input uncertainties (load, renewable generation, plug-in hybrid electric vehicle charging load, and grid energy price). The correlation between uncertain input variables is incorporated by modifying the “Hong’s 2m point estimate method”. The multi-objective optimization problem is solved using a normalized weighted average technique. Simulation studies on a 33-bus active distribution network elucidate the benefits of the proposed approach. The expected daily profit improves by \(\sim 2.95\%\), the voltage stability by \(\sim 17.94 \%\), and the average voltage deviation reduces by \(\sim 75\%\) with the energy management approach presented in this paper. To validate the proposed method of solving a multi-objective problem, the combined objective has also been solved using the ubiquitous “controlled elitist genetic algorithm” of the MATLAB toolbox. The optimal solution yielded by the weighted sum method lies on the Pareto front obtained by the controlled elitist genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ADN:

Active distribution network

AVD:

Average voltage deviation

BESS:

Battery energy storage system

DDP:

Discrete dynamic programming

DG:

Distributed generation

DNO:

Distribution network operator

EV:

Electric vehicles

IC:

Internal combustion

LA:

Lead-acid

Li-ion:

Lithium-ion

LSC:

Load side converter

MG:

Microgrid

NaS:

Sodium-sulphur

pdf:

Probability density functions

PE:

Power electronic

PEM:

Point estimate method

PHEV:

Plug-in hybrid vehicles

POPF:

Probabilistic optimal power flow

PPFP:

Probabilistic power flow program

PSG:

SPG active power output

PSO:

Particle swarm optimization

PV:

Photovoltaic

PWG:

WPG power output

SOC:

State of charge

SOP:

Soft open points

SPG:

Solar photovoltaic generator

ST:

Smart transformer

TCPD:

Total cost per day

VSCs:

Voltage source converters

VSI:

Voltage stability index

WPG:

Wind power generator

References

  1. Pepermans, G.; Driesen, J.; Haeseldonckx, D.; Belmans, R.; D-haeseleer, W.: Distributed generation: definition, benefits and issues. Energy Policy 33(6), 787–798 (2005)

    Google Scholar 

  2. Leou, R.C.; Su, C.L.; Lu, C.N.: Stochastic analyses of electric vehicle charging impacts on distribution network. IEEE Trans. Power Syst. 29(3), 1055–1063 (2013)

    Google Scholar 

  3. Maulik, A.; Das, D.; Jain, A.: Optimal scheduling of an islanded micro-grid with complex impedances considering load demand and renewable power uncertainties. In: 2019 21st International Middle East Power Systems Conference (MEPCON), pp. 20–25 (2019)

  4. Hua, L.; Wang, J.; Zhou, C.: Adaptive electric vehicle charging coordination on distribution network. IEEE Trans. Smart Grid. 5(6), 2666–2675 (2014)

    Google Scholar 

  5. Shariff, N.B.M.; Al Essa, M.; Cipcigan, L.: Probabilistic analysis of electric vehicles charging load impact on residential distributions networks. In: IEEE International Energy Conference (ENERGYCON), pp. 1–6 (2016)

  6. Deb, S.; Tammi, K.; Kalita, K.; Mahanta, P.: Impact of electric vehicle charging station load on distribution network. Energies 11(1), 178 (2018)

    Google Scholar 

  7. Das, H.; Rahman, M.; Li, S.; Tan, C.: Electric vehicles standards, charging infrastructure, and impact on grid integration: a technological review. Renew. Sustain. Energy Rev. 120, 109618 (2020)

    Google Scholar 

  8. Singh, A.; Maulik, A.; Das, D.: Operation of a grid-connected ac microgrid in presence of plug-in hybrid electric vehicle, price, load and generation uncertainties. In: 2021 IEEE Green Technologies Conference (GreenTech), pp. 263–270 (2021)

  9. Singh, A.; Maulik, A.; Das, D.: Stochastic impact assessment of phev charger levels in a microgrid. In: 2021 Innovations in Energy Management and Renewable Resources. (52042), pp. 1–6 (2021)

  10. Qian, K.; Zhou, C.; Allan, M.; Yuan, Y.: Modeling of load demand due to ev battery charging in distribution systems. IEEE Trans. Power Syst. 26(2), 802–810 (2010)

    Google Scholar 

  11. Tang, D.; Wang, P.: Probabilistic modeling of nodal charging demand based on spatial-temporal dynamics of moving electric vehicles. IEEE Trans. Smart Grid. 7(2), 627–636 (2015)

    Google Scholar 

  12. Ul-Haq, A.; Cecati, C.; El-Saadany, E.: Probabilistic modeling of electric vehicle charging pattern in a residential distribution network. Electric Power Syst. Res. 157, 126–133 (2018)

    Google Scholar 

  13. Reza Gholinejad, H.; Adabi, J.; Marzband, M.: Hierarchical Energy Management System for Home-Energy-Hubs Considering Plug-in Electric Vehicles. IEEE Trans. Ind. Appl. (2022)

  14. Tan, J.; Wang, L.: Real-time charging navigation of electric vehicles to fast charging stations: a hierarchical game approach. IEEE Trans. Smart Grid. 8(2), 846–856 (2015)

    Google Scholar 

  15. Zhao, T.; Li, Y.; Pan, X.; Wang, P.; Zhang, J.: Real-time optimal energy and reserve management of electric vehicle fast charging station: hierarchical game approach. IEEE Trans. Smart Grid. 9(5), 5357–5370 (2017)

    Google Scholar 

  16. Yao, L.; Lim, W.H.; Tsai, T.S.: A real-time charging scheme for demand response in electric vehicle parking station. IEEE Trans. Smart Grid. 8(1), 52–62 (2016)

    Google Scholar 

  17. Chaudhari, K.; Ukil, A.; Kumar, K.N.; Manandhar, U.; Kollimalla, S.K.: Hybrid optimization for economic deployment of ess in pv-integrated ev charging stations. IEEE Trans. Industr. Inf. 14(1), 106–116 (2017)

    Google Scholar 

  18. Maulik, A.; Das, D.: Optimal operation of a droop-controlled dcmg with generation and load uncertainties. IET Gener. Trans. Distrib. 12(12), 2905–2917 (2018)

    Google Scholar 

  19. Mohamed, A.; Salehi, V.; Ma, T.; Mohammed, O.: Real-time energy management algorithm for plug-in hybrid electric vehicle charging parks involving sustainable energy. IEEE Trans. Sustain. Energy. 5(2), 577–586 (2013)

    Google Scholar 

  20. Kavousi-Fard, A.; Abunasri, A.; Zare, A.; Hoseinzadeh, R.: Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids. Energy 78, 904–915 (2014)

    Google Scholar 

  21. Nafisi, H.; Agah, S.M.M.; Abyaneh, H.A.; Abedi, M.: Two-stage optimization method for energy loss minimization in microgrid based on smart power management scheme of phevs. IEEE Trans. Smart Grid. 7(3), 1268–1276 (2015)

    Google Scholar 

  22. Xu, N.; Chung, C.: Reliability evaluation of distribution systems including vehicle-to-home and vehicle-to-grid. IEEE Trans. Power Syst. 31(1), 759–768 (2015)

    Google Scholar 

  23. Kavousi-Fard, A.; Khodaei, A.: Efficient integration of plug-in electric vehicles via reconfigurable microgrids. Energy 111, 653–663 (2016)

    Google Scholar 

  24. Li, Y.; Xie, K.; Wang, L.; Xiang, Y.: The impact of phevs charging and network topology optimization on bulk power system reliability. Electric Power Syst. Res. 163, 85–97 (2018)

    Google Scholar 

  25. Sedighizadeh, M.; Esmaili, M.; Mohammadkhani, N.: Stochastic multi-objective energy management in residential microgrids with combined cooling, heating, and power units considering battery energy storage systems and plug-in hybrid electric vehicles. J. Clean. Prod. 195, 301–317 (2018)

    Google Scholar 

  26. Kheradmand-Khanekehdani, H.; Gitizadeh, M.: Well-being analysis of distribution network in the presence of electric vehicles. Energy 155, 610–619 (2018)

    Google Scholar 

  27. Aghdam, F.H.; Ghaemi, S.; Kalantari, N.T.: Evaluation of loss minimization on the energy management of multi-microgrid based smart distribution network in the presence of emission constraints and clean productions. J. Clean. Prod. 196, 185–201 (2018)

    Google Scholar 

  28. Azizivahed, A.; Arefi, A.; Ghavidel, S.; Shafie-Khah, M.; Li, L.; Zhang, J.; Catal Ao, J.P.: Energy management strategy in dynamic distribution network reconfiguration considering renewable energy resources and storage. IEEE Trans. Sustain. Energy. 11(2), 662–673 (2019)

    Google Scholar 

  29. Li, X.; Wang, S.: Energy management and operational control methods for grid battery energy storage systems. CSEE J. Power Energy Syst. 7(5), 1026–1040 (2019)

    Google Scholar 

  30. Johansson, S.; Persson, J.; Lazarou, S.; Theocharis, A.: Investigation of the impact of large-scale integration of electric vehicles for a Swedish distribution network. Energies 12(24), 4717 (2019)

    Google Scholar 

  31. Andervazh, M.R.; Javadi, S.; Aliabadi, M.H.: Active distribution network operation management with large penetration of hybrid electric vehicles and sustainable distributed energy generation. Sustain. Cities Soc. 62, 102313 (2020)

    Google Scholar 

  32. Li, N.; Su, Z.; Jerbi, H.; Abbassi, R.; Latifi, M.; Furukawa, N.: Energy management and optimized operation of renewable sources and electric vehicles based on microgrid using hybrid gravitational search and pattern search algorithm. Sustain. Cities Soc. 75, 103279 (2021)

    Google Scholar 

  33. Lin, Y.; Cheng, C.; Xiao, F.; Alsubhi, K.; Aljahdali, H.M.A.: A dag-based cloud-fog layer architecture for distributed energy management in smart power grids in the presence of phevs. Sustain. Cities Soc. 75, 103335 (2021)

    Google Scholar 

  34. Raja, C.; Vijaya, N.M.; Sethil, J.; Jeslin, D.N.: Enhancing system reliability by optimally integrating phev charging station and renewable distributed generators: A bi-level programming approach. Energy 229, 120746 (2021)

    Google Scholar 

  35. Aljehane, N.O.; Mansour, R.F.: Optimal allocation of renewable energy source and charging station for phevs. Sustain. Energy Technol. Assess. 49, 101669 (2022)

    Google Scholar 

  36. Cao, W.; Wu, J.; Jenkins, N.; Wang, C.; Green, T.: Operating principle of soft open points for electrical distribution network operation. Appl. Energy 164, 245–257 (2016)

    Google Scholar 

  37. Long, C.; Wu, J.; Thomas, L.; Jenkins, N.: Optimal operation of soft open points in medium voltage electrical distribution networks with distributed generation. Appl. Energy 184, 427–437 (2016)

    Google Scholar 

  38. Bai, L.; Jiang, T.; Li, F.; Chen, H.; Li, X.: Distributed energy storage planning in soft open point-based active distribution networks incorporating network reconfiguration and dg reactive power capability. Appl. Energy 210, 1082–1091 (2018)

    Google Scholar 

  39. Diaaeldin, I.; Abdel Aleem, S.; El-Rafei, A.; Abdelaziz, A.; Zobaa, A.F.: Optimal network reconfiguration in active distribution networks with soft open points and distributed generation. Energies 12(21), 4172 (2019)

    Google Scholar 

  40. Diaaeldin, I.M.; Abdel Aleem, S.H.; El-Rafei, A.; Abdelaziz, A.Y.; Zobaa, A.F.: Enhancement of hosting capacity with soft open points and distribution system reconfiguration: multi-objective bilevel stochastic optimization. Energies 13(20), 5446 (2020)

    Google Scholar 

  41. Diaaeldin, I.M.; Abdel Aleem, S.H.; El-Rafei, A.; Abdelaziz, A.Y.; Zobaa, A.F.: Hosting capacity maximization based on optimal reconfiguration of distribution networks with optimized soft open point operation. In: Hosting Capacity for Smart Power Grids, pp. 179–193. Springer, (2020)

  42. Hu, R.; Wang, W.; Chen, Z.; Wu, X.; Jing, L.; Ma, W.; Zeng, G.: Coordinated voltage regulation methods in active distribution networks with soft open points. Sustainability. 12(22), 9453 (2020)

    Google Scholar 

  43. Zhang, S.; Zhang, L.; Li, K.; Zhang, H.; Lyu, J.; Cheng, H.: Multi-objective planning of soft open point in active distribution network based on bi-level programming. In: IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), May 2019, pp. 3251-3255 (2019)

  44. Pamshetti, V. B.; Singh, S. P.: Coordinated allocation of BESS and SOP in high PV penetrated distribution network incorporating DR and CVR schemes. IEEE Syst. J. (2020)

  45. Cong, P.; Hu, Z.; Tang, W.; Lou, C.; Zhang, L.: Optimal allocation of soft open points in active distribution network with high penetration of renewable energy generations. IET Gener. Trans. Distrib. 14(26), 6732–6740 (2020)

    Google Scholar 

  46. Zhang, J.; Foley, A.; Wang, S.: Optimal planning of a soft open point in a distribution network subject to typhoons. Int. J. Electri. Power Energy Syst. 129, 106839 (2021)

    Google Scholar 

  47. Sarantakos, I.; Zografou-Barredo, N.M.; Huo, D.; Greenwood, D.: A reliability-based method to quantify the capacity value of soft open points in distribution networks. IEEE Trans. Power Syst. 36(6), 5032–5043 (2021)

    Google Scholar 

  48. Karunarathne, E.; Pasupuleti, J.; Ekanayake, J.; Almeida, D.: The optimal placement and sizing of distributed generation in an active distribution network with several soft open points. Energies 14(4), 1084 (2021)

    Google Scholar 

  49. Gao, X.; Sossan, F.; Christakou, K.; Paolone, M.; Liserre, M.: Con- current voltage control and dispatch of active distribution networks by means of smart transformer and storage. IEEE Trans. Industr. Electron. 65(8), 6657–6666 (2017)

    Google Scholar 

  50. Manojkumar, R.; Hrishikesan, V. M.; Kumar, C.; Ganguly, S.: Voltage control using smart transformer for increasing photovoltaic penetration in a distribution grid. In: 20th International Conference on Intelligent System Application to Power Systems (ISAP), Dec 2019, pp. 1-7 (2019).

  51. Manojkumar, R.; Kumar, C.; Ganguly, S.; Gooi, H.B.; Mekhilef, S.: Voltage control using smart transformer via dynamic optimal setpoints and limit tolerance in a residential distribution network with pv sources. IET Gener. Transm. Distrib. 14(22), 5143–5151 (2020)

    Google Scholar 

  52. Kumar, C.; Manojkumar, R.; Ganguly, S.; Liserre, M.: Power loss minimization in smart transformer based meshed hybrid distribution network. In: IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, pp. 1670–1675 (2020).

  53. Kumar, C.; Manojkumar, R.; Ganguly, S.; Liserre, M.: Impact of optimal control of distributed generation converters in smart transformer based meshed hybrid distribution network. IEEE Access (2021)

  54. Kumar, C.; Manojkumar, R.; Ganguly, S.: Optimal placement of smart transformer low voltage converter in meshed hybrid distribution network. In: 2021 IEEE 12th Energy Conversion Congress & Exposition-Asia (ECCE-Asia), pp. 1795–1800 (2021)

  55. Chen, J.; Liu, M.; De Carne, G.; Zhu, R.; Liserre, M.; Milano, F.; O’Donnell, T.: Impact of smart transformer voltage and frequency support in a high renewable penetration system. Electric Power Syst. Res. 190, 106836 (2021)

    Google Scholar 

  56. Aien, M.; Fotuhi-Firuzabad, M.; Rashidinejad, M.: Probabilistic optimal power flow in correlated hybrid wind-photovoltaic power systems. IEEE Trans. Smart Grid. 5(1), 130–138 (2014)

    Google Scholar 

  57. Palizban, O.; Kauhaniemi, K.; Guerrero, J.M.: Microgrids in active network management-Part I: hierarchical control, energy storage, virtual power plants, and market participation. Renew. Sustain. Energy Rev. 36, 428–439 (2014)

    Google Scholar 

  58. Palizban, O.; Kauhaniemi, K.: Hierarchical control structure in microgrids with distributed generation: Island and grid-connected mode. Renew. Sustain. Energy Rev. 44, 797–813 (2015)

    Google Scholar 

  59. Mobashsher, M.M.; Keypour, R.; Savaghebi, M.: Distributed optimal voltage control in islanded microgrids. Int. Trans. Electr. Energy Syst. 31(11), 13045 (2021)

    Google Scholar 

  60. Chakravorty, M.; Das, D.: Voltage stability analysis of radial distribution networks. Int. J. Electr. Power Energy Syst. 23(2), 129–135 (2001)

    Google Scholar 

  61. Kong, X.; Bai, L.; Hu, Q.; Li, F.; Wang, C.: Day-ahead optimal scheduling method for grid-connected microgrid based on energy storage control strategy. J. Mod. Power Syst. Clean Energy. 4(4), 648–658 (2016)

    Google Scholar 

  62. Eberhart, R.; Kennedy, J.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Citeseer, vol. 4, pp. 1942–1948 (1995).

  63. Baran, M.E.; Wu, F.F.: Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Power Eng. Rev. 9(4), 101–102 (1989)

    Google Scholar 

  64. Amini, M.H.; Moghaddam, M.P.; Karabasoglu, O.: Simultaneous allocation of electric vehicles- parking lots and distributed renewable resources in smart power distribution networks. Sustain. Cities Soc. 28, 332–342 (2017)

    Google Scholar 

  65. Nayak, A.; Maulik, A.; Das, D.: An integrated optimal operating strategy for a grid-connected ac microgrid under load and renewable generation uncertainty considering demand response. Sustain. Energy Technol. Assess. 45, 101169 (2021)

  66. Hooshmand, E.; Rabiee, A.; Jalilzadeh, S.; Soroudi, A.: Optimal flexibility coordination for energy procurement in distribution networks. IET Renew. Power Gener. 15(6), 1191–1203 (2021)

    Google Scholar 

  67. Wang, C.; Song, G.; Li, P.; Ji, H.; Zhao, J.; Wu, J.: Optimal siting and sizing of soft open points in active electrical distribution networks. Appl. Energy 189, 301–309 (2017)

    Google Scholar 

  68. Maulik, A.; Das, D.: Determination of optimal size of battery energy storage system (BESS) for a renewable power based microgrid. In: 2020 IEEE 17th India Council International Conference (INDICON), pp. 1-6 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avirup Maulik.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Maulik, A. Energy Management of an Active Distribution Network Considering Correlation Between Uncertain Input Variables. Arab J Sci Eng 48, 6377–6398 (2023). https://doi.org/10.1007/s13369-022-07379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07379-z

Keywords

Navigation