Skip to main content
Log in

EEG Signals to Digit Classification Using Deep Learning-Based One-Dimensional Convolutional Neural Network

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The communication between the human brain and the external devices can be established using Electroencephalograms (EEG)-based Brain–Computer Interface by converting the neural activities of the brain into electric signals. The EEG signals were isolated into an energy–frequency–time spectrum with Hilbert Huang transform that was used by the Deep Learning (DL)-based model to learn discriminative spectro-temporal patterns of the raw EEG signals of ten digits. This paper has two major contributions: first, create a novel dataset known as BrainDigiData of EEG signals of ten digits from (0–9) using a multi-channel EEG device. Second to propose a DL-based one-dimensional Convolutional neural network model BrainDigiCNN to classify the BrainDigiData of EEG signals of digits. The publicly available Mind Big Dataset (MBD) of digits was also used to evaluate the performance of the proposed model. The research done in this paper showed that the band-wise analysis of EEG signals in a complex scenario resulted in improved results as compared to the scenario used in the previously existing work for digit classification using EEG signals. The proposed BrainDigiCNN model achieved the highest average accuracy of 96.99%. The average classification accuracy of 98.27% was achieved for the MBD dataset of 14 channel device EMOTIV EPOC+ and 89.62% on the MBD dataset of 5-channel EMOTIV Insight. The statistical analysis of the proposed model on traditional Machine Learning (ML) classifiers using paired t-test resulted in a p-value less than 0.05 which shows the significant difference between the proposed model and ML classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The collected dataset can be shared and made publicly available once the paper will be accepted and published.

Notes

  1. http://www.mindbigdata.com/opendb/.

References

  1. Pineda, J.A.; Silverman, D.S.; Vankov, A.; Hestenes, J.: Learning to control brain rhythms: making a brain–computer interface possible. IEEE Trans. Neural Syst. Rehabilitat. Eng. 11(2), 181–184 (2003)

    Article  Google Scholar 

  2. Vallabhaneni, A.; Wang, T.; He, B.: Brain–computer interface. In Neural Engineering, pp. 85–121. Springer (2005)

  3. Green, A.M.; Kalaska, J.F.: Learning to move machines with the mind. Trends Neurosci. 34(2), 61–75 (2011)

    Article  Google Scholar 

  4. Muller-Putz, G.R.; Pfurtscheller, G.: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng. 55(1), 361–364 (2007)

    Article  Google Scholar 

  5. Maiorana, Emanuele: Deep learning for EEG-based biometric recognition. Neurocomputing 410, 374–386 (2020)

    Article  Google Scholar 

  6. Li, Y.; Yang, H.; Li, J.; Chen, D.; Min, D.: Eeg-based intention recognition with deep recurrent-convolution neural network: performance and channel selection by grad-cam. Neurocomputing 415, 225–233 (2020)

    Article  Google Scholar 

  7. Cabañero, L.; Hervás, R.; González, I.; Fontecha, J.; Mondéjar, T.; Bravo, J.: Characterisation of mobile-device tasks by their associated cognitive load through EEG data processing. Fut. Gener. Comput. Syst. 113, 380–390 (2020)

    Article  Google Scholar 

  8. Tiwari, S.; Goel, S.; Bhardwaj, A.: Midnn-a classification approach for the EEG based motor imagery tasks using deep neural network. Appl. Intell., 1–20 (2021)

  9. Huang, L.; Luijtelaar, G. van.: Brain computer interface for epilepsy treatment. Brain-Comput. Interface Syst.-Recent Progr. Fut. Prospect. (2013)

  10. Geethanjali, P.: Fundamentals of brain signals and its medical application using data analysis techniques. In: Computational Intelligence for Big Data Analysis, pp 181–197. Springer, (2015)

  11. Bosl, W.J.; Tager-Flusberg, H.; Nelson, C.A.: EEG analytics for early detection of autism spectrum disorder: a data-driven approach. Sci. Rep. 8(1), 1–20 (2018)

    Article  Google Scholar 

  12. Jouaiti, M.; Henaff, Patrick: Robot-based motor rehabilitation in autism: a systematic review. Int. J. Soc. Robot. 11(5), 753–764 (2019)

    Article  MATH  Google Scholar 

  13. Aggogeri, F.; Mikolajczyk, T.; O’Kane, James: Robotics for rehabilitation of hand movement in stroke survivors. Adv. Mech. Eng. 11(4), 1687814019841921 (2019)

    Article  Google Scholar 

  14. Trachtman, J.N.: Post-traumatic stress disorder and vision. Optom.-Jo. Am. Optom. Assoc. 81(5), 240–252 (2010)

    Google Scholar 

  15. Lange, K.W.; Reichl, S.; Lange, K.M.; Tucha, L.; Tucha, O.: The history of attention deficit hyperactivity disorder. ADHD Atten. Defic. Hyperact. Disord. 2(4), 241–255 (2010)

    Article  Google Scholar 

  16. Zhuang, M.; Qingheng, W.; Wan, F.; Yong, H.: State-of-the-art non-invasive brain-computer interface for neural rehabilitation: a review. J. Neurorestoratol. 8(1), 4 (2020)

    Article  Google Scholar 

  17. Greenfield, L.J.; Geyer, J.D.; Carney, P.R.: Reading EEGs: A practical Approach. Lippincott Williams & Wilkins, (2012)

  18. Chai, X.; Wang, Q.; Zhao, Y.; Xin, L.; Bai, O.; Yongqiang, L.: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition. Comput. Biol. Med. 79, 205–214 (2016)

    Article  Google Scholar 

  19. Shin, Y.; Lee, S.; Ahn, M.; Cho, H.; Jun, S.C.; Lee, H.-N.: Noise robustness analysis of sparse representation based classification method for non-stationary EEG signal classification. Biomed. Sign. Process. Control 21, 8–18 (2015)

    Article  Google Scholar 

  20. Prpa, M.; Pasquier, P.: Brain-computer interfaces in contemporary art: a state of the art and taxonomy. Brain Art 65–115 (2019)

  21. Huth, A.G.; De Heer, W.A.; Griffiths, T.L.; Theunissen, F.E.; Gallant, J.L.: Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532(7600), 453–458 (2016)

    Article  Google Scholar 

  22. Spampinato, C.; Palazzo, S.; Kavasidis, I.; Giordano, D.; Souly, N.; Shah, M.: Deep learning human mind for automated visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6809–6817 (2017)

  23. Elsayed, N.; Zaghloul, Z.S.; Bayoumi, M.: Brain computer interface: EEG signal preprocessing issues and solutions. Int. J. Comput. Appl 169(3), 12–16 (2017)

    Google Scholar 

  24. Nishad, A.; Upadhyay, A.; Pachori, R.B.; Acharya, U.R.: Automated classification of hand movements using tunable-q wavelet transform based filter-bank with surface electromyogram signals. Fut. Gener. Comput. Syst. 93, 96–110 (2019)

    Article  Google Scholar 

  25. Al-Qerem, A.; Kharbat, F.; Nashwan, S.; Ashraf, S.; Blaou, K.: General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution. Int. J. Distrib. Sens. Netw. 16(3), 1550147720911009 (2020)

    Article  Google Scholar 

  26. Nunes, J.C.; Bouaoune, Y.; Delechelle, E.; Niang, O.; Bunel, P.: Image analysis by bidimensional empirical mode decomposition. Image Vis. Comput. 21(12), 1019–1026 (2003)

    Article  MATH  Google Scholar 

  27. Zeng, Wei; Yuan, Chengzhi; Wang, Qinghui; Liu, Fenglin; Wang, Ying: Classification of gait patterns between patients with Parkinson’s disease and healthy controls using phase space reconstruction (PSR), empirical mode decomposition (EMD) and neural networks. Neural Netw. 111, 64–76 (2019)

    Article  Google Scholar 

  28. Hasan, N.I.; Bhattacharjee, A.: Deep learning approach to cardiovascular disease classification employing modified ECG signal from empirical mode decomposition. Biomed. Sign. Process. Control 52, 128–140 (2019)

    Article  Google Scholar 

  29. Mi, X.; Liu, H.; Li, Y.: Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine. Energy Convers. Manag. 180, 196–205 (2019)

    Article  Google Scholar 

  30. Thilagaraj, M.; Rajasekaran, M.P.: An empirical mode decomposition (EMD)-based scheme for alcoholism identification. Patt. Recognit. Lett. 125, 133–139 (2019)

    Article  Google Scholar 

  31. Hadoush, H.; Alafeef, M.; Abdulhay, Enas: Automated identification for autism severity level: EEG analysis using empirical mode decomposition and second order difference plot. Behav. Brain Res. 362, 240–248 (2019)

    Article  Google Scholar 

  32. Ghritlahare, R.; Sahu, M.; Kumar, R.: Classification of two-class motor imagery EEG signals using empirical mode decomposition and hilbert–huang transformation. In: Computing and Network Sustainability, pp. 375–386. Springer (2019)

  33. Gaur, P.; Pachori, R.B.; Wang, H.; Prasad, G.: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and riemannian geometry. Expert Syst. Appl. 95, 201–211 (2018)

    Article  Google Scholar 

  34. Wei, W.; Nagarajan, S.; Chen, Zhe: Bayesian machine learning: Eeg\(\backslash \)/meg signal processing measurements. IEEE Sign. Process. Mag. 33(1), 14–36 (2015)

    Google Scholar 

  35. Ridouh, A.; Boutana, D.; Bourennane, S.: EEG signals classification using support vector machine. Adv. Sci. Eng. Med. 12(2), 215–224 (2020)

    Article  Google Scholar 

  36. Arora, A.; Lin, J.-J.; Gasperian, A.; Maldjian, J.; Stein, J.; Kahana, M.; Lega, B.: Comparison of logistic regression, support vector machines, and deep learning classifiers for predicting memory encoding success using human intracranial eeg recordings. J. Neural Eng. 15(6), 066028 (2018)

  37. Liu, Y.; Guifang, F.: Emotion recognition by deeply learned multi-channel textual and EEG features. Fut. Gener. Comput. Syst. 119, 1–6 (2021)

    Article  Google Scholar 

  38. Amin, S.U.; Alsulaiman, M.; Muhammad, G.; Mekhtiche, M.A.; Hossain, M.S.: Deep learning for EEG motor imagery classification based on multi-layer CNNS feature fusion. Fut. Gener. Comput. Syst. 101, 542–554 (2019)

    Article  Google Scholar 

  39. Chen, X.; He, J.; Xiaoqiang, W.; Yan, W.; Wei, W.: Sleep staging by bidirectional long short-term memory convolution neural network. Fut. Gener. Comput. Syst. 109, 188–196 (2020)

    Article  Google Scholar 

  40. Chollet, F.: Deep Learning with Python. Simon and Schuster (2017)

  41. Pratama, I.W.P.; Kesiman, M.W.A.; Gunadi, I.G.A.; Kautsar, R.J.A.; Utaminingrum, F.; Budi, A.S.; Buana, W.; Meily, S.O.; Fudzee, M.F.B.M.D.; Aminudin, A.; et al.: Frequency band and PCA feature comparison for EEG signal classification. Lontar Komput.: J. Ilmiah Teknol. Informasi 12(1), 1 (2021)

    Article  Google Scholar 

  42. Chen, D.; Yang, W.; Miao, R.; Huang, L.; Zhang, L.; Deng, C.; Han, Na.: Novel joint algorithm based on EEG in complex scenarios. Comput. Assist. Surg. 24(sup2), 117–125 (2019)

    Article  Google Scholar 

  43. Jolly, B.L.K.; Aggrawal, P.; Nath, S.S.; Gupta, V.; Grover, M.S.; Shah, R.R.: Universal EEG encoder for learning diverse intelligent tasks. In: 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), pp. 213–218. IEEE (2019)

  44. Bird, J.J.; Faria, D.R.; Manso, L.J.; Ekárt, A.; Buckingham, C.D.: A deep evolutionary approach to bioinspired classifier optimisation for brain-machine interaction. Complexity 2019 (2019)

  45. Tirupattur, P.; Rawat, Y.Si.; Spampinato, C.; Shah, M.: Thoughtviz: visualizing human thoughts using generative adversarial network. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 950–958 (2018)

  46. Kumar, P.; Saini, R.; Roy, P.P.; Sahu, P.K.; Dogra, D.P.: Envisioned speech recognition using EEG sensors. Pers. Ubiquitous Comput. 22(1), 185–199 (2018)

    Article  Google Scholar 

  47. Motamedi-Fakhr, S.; Moshrefi-Torbati, M.; Hill, M.; Hill, C.M.; White, P.R.: Signal processing techniques applied to human sleep EEG signals-a review. Biomed. Sign. Process. Control 10, 21–33 (2014)

    Article  Google Scholar 

  48. Selesnick, I.W.; Burrus, C.S.: Generalized digital butterworth filter design. IEEE Trans. Sign. Process. 46(6), 1688–1694 (1998)

    Article  Google Scholar 

  49. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London. Series A: Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Bajaj, V.; Pachori, R.B.: Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 16(6), 1135–1142 (2011)

    Article  Google Scholar 

Download references

Funding

The funding of research is done by the School of CSET, Bennett University, Greater Noida, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Tiwari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The participants for the experiment were informed, and prior instruction for the data collection was given to all subjects before the recording of their EEG signals of the brain. All the participants were free to choose whether they wanted to participate, and they could withdraw from the experiment anytime without any negative repercussions. The subjects participated according to their own choice for data collection of their brain signals for each of the individual digits by filling out an informed consent form.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S., Goel, S. & Bhardwaj, A. EEG Signals to Digit Classification Using Deep Learning-Based One-Dimensional Convolutional Neural Network. Arab J Sci Eng 48, 9675–9691 (2023). https://doi.org/10.1007/s13369-022-07313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07313-3

Keywords

Navigation