Skip to main content
Log in

Structural Properties and Degradation Efficiency Photocatalyst-based Composite Titanium Dioxide/Activated Carbon by Charge Trap System for Groundwater Reach Phenol Treatment

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

High recombination of the photoexcited electron–hole pairs leading to a drop in the photocatalytic performance. The pore of activated carbon (AC) can be act as a trap of the charge of electron/hole (e/h) which can suppress recombination. The objective in this study maximizing function of the pore of AC for create composite combine with TiO2 that can act in visible light. In the pore, the reaction occurs between the charge and the H2O or O2 produces OH* radicals. These radicals entering the chemical site of pollution to break up the bonding with the final product are harmless. The prepared composite TiO2/activated carbon (TAC) by wet impregnation method were characterized by X-ray diffraction, Fourier-transform infrared, and ultraviolet–visible spectroscopy. Composite TAC with ratio 0.5:1.5, 1:1, 1.5:0.5 shows degradation 94.06%, 94.91%, and 88.98%, respectively, for only 45 min irradiation, indicated that the pore successfully suppressing recombination of the charge. We have performed good efficiency for five adsorption–desorption cycles of TAC. The TAC 1:1 ratio shows the best photocatalyst performance which degraded 94.91% for 45 min irradiation. The composite TAC shows high potential in suppressing recombination of charge, means that, effective and efficient ground wastewater treatment materials in future for improvement human access to the clean water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raizada, P.; Kumari, J.; Shandilya, P.; Dhiman, R.; Pratap Singh, V.; Singh, P.: Magnetically retrievable Bi2WO6/Fe3O4 immobilized on graphene sand composite for investigation of photocatalytic mineralization of oxytetracycline and ampicillin. Process Saf. Environ. Prot. 106, 104–116 (2017). https://doi.org/10.1016/j.psep.2016.12.012

    Article  Google Scholar 

  2. Zhang, H.; Huang, H.; Ming, H.; Li, H.; Zhang, L.; Liu, Y.; Kang, Z.: Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J. Mater. Chem. 22, 10501–10506 (2012). https://doi.org/10.1039/C2JM30703K

    Article  Google Scholar 

  3. Gaya, U.I.; Abdullah, A.H.: Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 9, 1–12 (2008). https://doi.org/10.1016/j.jphotochemrev.2007.12.003

    Article  Google Scholar 

  4. Theerthagiri, J.; Chandrasekaran, S.; Salla, S.; Elakkiya, V.; Senthil, R.A.; Nithyadharseni, P.; Maiyalagan, T.; Micheal, K.; Ayeshamariam, A.; Arasu, M.V.; Al-Dhabi, N.A.; Kim, H.-S.: Recent developments of metal oxide based heterostructures for photocatalytic applications towards environmental remediation. J. Solid State Chem. 267, 35–52 (2018). https://doi.org/10.1016/j.jssc.2018.08.006

    Article  Google Scholar 

  5. Alinsafi, A.; Evenou, F.; Abdulkarim, E.M.; Pons, M.N.; Zahraa, O.; Benhammou, A.; Yaacoubi, A.; Nejmeddine, A.: Treatment of textile industry wastewater by supported photocatalysis. Dyes Pigments 74, 439–445 (2007). https://doi.org/10.1016/j.dyepig.2006.02.024

    Article  Google Scholar 

  6. Fayazi, M.; Taher, M.A.; Afzali, D.; Mostafavi, A.: Enhanced Fenton-like degradation of methylene blue by magnetically activated carbon/hydrogen peroxide with hydroxylamine as Fenton enhancer. J. Mol. Liq. 216, 781–787 (2016). https://doi.org/10.1016/j.molliq.2016.01.093

    Article  Google Scholar 

  7. Tan, J.; Li, Z.; Li, J.; Wu, J.; Yao, X.; Zhang, T.: Graphitic carbon nitride-based materials in activating persulfate for aqueous organic pollutants degradation: a review on materials design and mechanisms. Chemosphere 262, 127675 (2021). https://doi.org/10.1016/j.chemosphere.2020.127675

    Article  Google Scholar 

  8. Lang, X.; Zhao, J.; Chen, X.: Visible-light-induced photoredox catalysis of dye-sensitized titanium dioxide: selective aerobic oxidation of organic sulfides. Angew. Chem. Int. Ed. 55, 4697–4700 (2016). https://doi.org/10.1002/anie.201600405

    Article  Google Scholar 

  9. Sedaghati, N.; Habibi-Yangjeh, A.; Pirhashemi, M.; Vadivel, S.: Boosted visible-light photocatalytic performance of TiO2x decorated by BiOI and AgBr nanoparticles. J. Photochem. Photobiol. A Chem. 384, 112066 (2019). https://doi.org/10.1016/j.jphotochem.2019.112066

    Article  Google Scholar 

  10. Wang, P.; Zhou, T.; Wang, R.; Lim, T.-T.: Carbon-sensitized and nitrogen-doped TiO2 for photocatalytic degradation of sulfanilamide under visible-light irradiation. Water Res. 45, 5015–5026 (2011). https://doi.org/10.1016/j.watres.2011.07.002

    Article  Google Scholar 

  11. Huang, H.; Song, Y.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J.: One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Appl. Catal. B 251, 154–161 (2019). https://doi.org/10.1016/j.apcatb.2019.03.066

    Article  Google Scholar 

  12. Khalyavka, T.; Bondarenko, M.; Shcherban, N.; Petrik, I.; Melnyk, A.: Effect of the C and S additives on structural, optical, and photocatalytic properties of TiO2. Appl. Nanosci. 9, 695–702 (2019). https://doi.org/10.1007/s13204-018-0838-1

    Article  Google Scholar 

  13. Ren, W.; Ai, Z.; Jia, F.; Zhang, L.; Fan, X.; Zou, Z.: Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B 69, 138–144 (2007). https://doi.org/10.1016/j.apcatb.2006.06.015

    Article  Google Scholar 

  14. Matos, J.; García, A.; Zhao, L.; Titirici, M.M.: Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light. Appl. Catal. A Gen. 390, 175–182 (2010). https://doi.org/10.1016/j.apcata.2010.10.009

    Article  Google Scholar 

  15. Alsaiari, M.: Biomass-derived active carbon (AC) modified TiO2 photocatalyst for efficient photocatalytic reduction of chromium (VI) under visible light. Arab. J. Chem. 14, 103258 (2021). https://doi.org/10.1016/j.arabjc.2021.103258

    Article  Google Scholar 

  16. Liu, G.; Xia, H.; Niu, Y.; Zhao, X.; Zhang, G.; Song, L.; Chen, H.: Photocatalytic performance of doped TiO2/AC coating and its UV stability research. Prog. Org. Coat. 148, 105882 (2020). https://doi.org/10.1016/j.porgcoat.2020.105882

    Article  Google Scholar 

  17. Jiang, Z.; Zhang, X.; Yuan, Z.; Chen, J.; Huang, B.; Dionysiou, D.D.; Yang, G.: Enhanced photocatalytic CO2 reduction via the synergistic effect between Ag and activated carbon in TiO2/AC-Ag ternary composite. Chem. Eng. J. 348, 592–598 (2018). https://doi.org/10.1016/j.cej.2018.04.180

    Article  Google Scholar 

  18. Ilyas, S.; Abdullah, B.; Tahir, D.: Enhancement of absorbing frequency and photo-catalytic performance by temperature treatment of composites Fe3O4-AC nanoparticle. Adv. Powder Technol. 31, 905–913 (2020). https://doi.org/10.1016/j.apt.2019.11.007

    Article  Google Scholar 

  19. Tahir, D.; Abdullah, B.; Ilyas, S.; Fahri, A.N.; Anugrah, M.A.; Kim, K.; Kang, H.J.: Decreasing charge recombination by magnetic trap of iron-carbon (Fe-AC) composite for enhanced photocatalytic performance. Surf. Interface Anal. 53, 446–459 (2021). https://doi.org/10.1002/sia.6932

    Article  Google Scholar 

  20. Lahrar, E.H.; Simon, P.; Merlet, C.: Carbon–carbon supercapacitors: beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance. J. Chem. Phys. 155, 184703 (2021). https://doi.org/10.1063/5.0065150

    Article  Google Scholar 

  21. Mo, Z.; Yang, W.; Gao, S.; Shang, J.K.; Ding, Y.; Sun, W.; Li, Q.: Efficient oxygen reduction reaction by a highly porous, nitrogen-doped carbon sphere electrocatalyst through space confinement effect in nanopores. J. Adv. Ceram. 10, 714–728 (2021). https://doi.org/10.1007/s40145-021-0466-1

    Article  Google Scholar 

  22. Li, R.; Yang, W.; Gao, S.; Shang, J.; Li, Q.: Hydrous cerium oxides coated glass fiber for efficient and long-lasting arsenic removal from drinking water. J. Adv. Ceram. 10, 247–257 (2021). https://doi.org/10.1007/s40145-020-0435-0

    Article  Google Scholar 

  23. Sadeghzadeh-Attar, A.: Photocatalytic degradation evaluation of N-Fe codoped aligned TiO2 nanorods based on the effect of annealing temperature. J. Adv. Ceram. 9, 107–122 (2020). https://doi.org/10.1007/s40145-019-0353-1

    Article  Google Scholar 

  24. Eshaghi, A.; Moradi, H.: Optical and photocatalytic properties of the Fe-doped TiO2 nanoparticles loaded on the activated carbon. Adv. Powder Technol. 29, 1879–1885 (2018). https://doi.org/10.1016/j.apt.2018.04.026

    Article  Google Scholar 

  25. Ilyas, S.; Heryanto, H.; Tahir, D.: Correlation between structural and optical properties of CuO/carbon nanoparticle in supports the photocatalytic performance and attenuate the electromagnetic wave. J. Environ. Chem. Eng. 9, 104670 (2021). https://doi.org/10.1016/j.jece.2020.104670

    Article  Google Scholar 

  26. Zhu, X.; Li, Q.; Fang, Y.; Liu, X.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y.: Graphene-modified TiO2 microspheres synthesized by a facile spray-drying route for enhanced sodium-ion storage. Part. Part. Syst. Charact. 33, 545–552 (2016). https://doi.org/10.1002/ppsc.201500216

    Article  Google Scholar 

  27. Brown, G.N.; Birks, J.W.; Koval, C.A.: Development and characterization of a titanium dioxide-based semiconductor photoelectrochemical detector. Anal. Chem. 64, 427–434 (1992). https://doi.org/10.1021/ac00028a018

    Article  Google Scholar 

  28. Abdullah, B.; Ilyas, S.; Tahir, D.: Nanocomposites Fe/activated carbon/PVA for microwave absorber: synthesis and characterization. J. Nanomater. 2018, 9823263 (2018). https://doi.org/10.1155/2018/9823263

    Article  Google Scholar 

  29. Heryanto, H.; Abdullah, B.; Tahir, D.: Analysis of structural properties of X-ray diffraction for composite copper-activated carbon by modified Williamson–Hall and size-strain plotting methods. J. Phys. Conf. Ser. 1080, 012007 (2018). https://doi.org/10.1088/1742-6596/1080/1/012007

    Article  Google Scholar 

  30. Rauf, N.; Ilyas, S.; Heryanto, H.; Rahmat, R.; Fahri, A.N.; Rahmi, M.H.; Tahir, D.: The correlation between structural and optical properties of zinc hydroxide nanoparticle in supports photocatalytic performance. Opt. Mater. (Amst.) 112, 110780 (2021). https://doi.org/10.1016/j.optmat.2020.110780

    Article  Google Scholar 

  31. Anugrahwidya, R.; Yudasari, N.; Tahir, D.: Optical and structural investigation of synthesis ZnO/Ag Nanoparticles prepared by laser ablation in liquid. Mater. Sci. Semicond. Process. 105, 104712 (2020). https://doi.org/10.1016/j.mssp.2019.104712

    Article  Google Scholar 

  32. Tahir, D.; Suarga; Sari, N.H.; Yulianti: Stopping powers and inelastic mean free path of 200eV–50keV electrons in polymer PMMA, PE, and PVC. Appl. Radiat. Isotopes 95, 59–62 (2015). https://doi.org/10.1016/j.apradiso.2014.10.001

    Article  Google Scholar 

  33. Tahir, D.; Heryanto, H.; Ilyas, S.; Fahri, A.N.; Rahmat, R.; Rahmi, M.H.; Taryana, Y.; Sukaryo, S.G.: Excellent electromagnetic wave absorption of Co/Fe2O3 composites by additional activated carbon for tuning the optical and the magnetic properties. J. Alloys Compd. 864, 158780 (2021). https://doi.org/10.1016/j.jallcom.2021.158780

    Article  Google Scholar 

  34. Ulum, B.; Ilyas, S.; Fahri, A.N.; Mutmainna, I.; Anugrah, M.A.; Yudasari, N.; Demmalino, E.B.; Tahir, D.: Composite carbon-lignin/zinc oxide nanocrystalline ball-like hexagonal mediated from Jatropha curcas L leaf as photocatalyst for industrial dye degradation. J. Inorg. Organomet. Polym. Mater. 30, 4905–4916 (2020). https://doi.org/10.1007/s10904-020-01631-5

    Article  Google Scholar 

  35. Pambudi, A.B.; Kurniawati, R.; Iryani, A.; Hartanto, D.: Effect of calcination temperature in the synthesis of carbon doped TiO2 without external carbon source. AIP Conf. Proc. 2049, 020074 (2018). https://doi.org/10.1063/1.5082479

    Article  Google Scholar 

  36. Suganthi, N.; Thangavel, S.; Kannan, K.: Hibiscus subdariffa leaf extract mediated 2-D fern-like ZnO/TiO2 hierarchical nanoleaf for photocatalytic degradation. FlatChem 24, 100197 (2020). https://doi.org/10.1016/j.flatc.2020.100197

    Article  Google Scholar 

  37. Bagheri, S.; Shameli, K.; Abd Hamid, S.B.: Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol–gel method. J. Chem. 2013, 848205 (2013). https://doi.org/10.1155/2013/848205

    Article  Google Scholar 

  38. Indira, K.; KamachiMudali, U.; Rajendran, N.: In vitro bioactivity and corrosion resistance of Zr incorporated TiO2 nanotube arrays for orthopaedic applications. Appl. Surf. Sci. 316, 264–275 (2014). https://doi.org/10.1016/j.apsusc.2014.08.001

    Article  Google Scholar 

  39. Rauf, M.; Ashraf, S.: Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151, 10–18 (2009). https://doi.org/10.1016/j.cej.2009.02.026

    Article  Google Scholar 

  40. Rizkayanti, Y.; Yusuf, Y.: Optimization of the temperature synthesis of hydroxyapatite from Indonesian crab shells. Int. J. Nanoelectron. Mater. 12, 85–92 (2019)

    Google Scholar 

  41. Fakhrul Ridhwan Samsudin, M.; Sufian, S.; Bashiri, R.; Muti Mohamed, N.; Tau Siang, L.; Mahirah Ramli, R.: Optimization of photodegradation of methylene blue over modified TiO2/BiVO4 photocatalysts: effects of total TiO2 loading and different type of co-catalyst. Mater. Today Proc. 5, 21710–21717 (2018). https://doi.org/10.1016/j.matpr.2018.07.023

    Article  Google Scholar 

  42. Yu, H.; Zhao, Y.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y.; Wu, L.-Z.; Tung, C.-H.; Zhang, T.: Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A Mater. 2, 3344–3351 (2014). https://doi.org/10.1039/C3TA14108J

    Article  Google Scholar 

  43. Yang, Y.; Gao, P.; Wang, Y.; Sha, L.; Ren, X.; Zhang, J.; Chen, Y.; Wu, T.; Yang, P.; Li, X.: A direct charger transfer from interface to surface for the highly efficient spatial separation of electrons and holes: the construction of Ti–C bonded interfaces in TiO2-C composite as a touchstone for photocatalytic water splitting. Nano Energy 33, 29–36 (2017). https://doi.org/10.1016/j.nanoen.2017.01.030

    Article  Google Scholar 

  44. Munguti, L.; Dejene, F.: Influence of annealing temperature on structural, optical and photocatalytic properties of ZnO–TiO2 ​ composites for application in dye removal in water. Nano-Struct. Nano-Obj. 24, 100594 (2020). https://doi.org/10.1016/j.nanoso.2020.100594

    Article  Google Scholar 

  45. Nemoto, S.; Ueno, T.; Watthanaphanit, A.; Hieda, J.; Saito, N.: Crystallinity and surface state of cellulose in wet ball-milling process: ARTICLE. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.44903

    Article  Google Scholar 

  46. Xiao, Y.; Wang, Y.; Xiao, M.; Liu, C.; Hou, S.; Ge, J.; Xing, W.: Regulating the pore structure and oxygen vacancies of cobaltosic oxide hollow dodecahedra for an enhanced oxygen evolution reaction. NPG Asia Mater. 12, 73 (2020). https://doi.org/10.1038/s41427-020-00255-y

    Article  Google Scholar 

  47. Zhang, J.; Li, J.: The oxygen vacancy defect of ZnO/NiO nanomaterials improves photocatalytic performance and ammonia sensing performance. Nanomaterials 12, 433 (2022). https://doi.org/10.3390/nano12030433

    Article  Google Scholar 

  48. Yakovenko, O.; Matzui, L.; Vovchenko, L.; Viktor, O.; Zagorodnii, V.; Trukhanov, S.; Trukhanov, A.: Electromagnetic properties of carbon nanotube/BaFe12xGaxO19/epoxy composites with random and oriented filler distributions. Nanomaterials (Basel) 11, 2873 (2021). https://doi.org/10.3390/nano11112873

    Article  Google Scholar 

  49. Kozlovskiy, A.L.; Zdorovets, M.: v: Study of hydrogenation processes in radiation-resistant nitride ceramics. J. Mater. Sci. Mater. Electron. 31, 11227–11237 (2020). https://doi.org/10.1007/s10854-020-03671-6

    Article  Google Scholar 

  50. Kozlovskiy, A.; Egizbek, K.; Zdorovets, M.V.; Ibragimova, M.; Shumskaya, A.; Rogachev, A.A.; Ignatovich, Z.V.; Kadyrzhanov, K.: Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of feceox nanocomposites doped with nb2o5. Sensors 20, 4851 (2020)

    Article  Google Scholar 

  51. Wang, B.; Yang, S.-Z.; Chen, H.; Gao, Q.; Weng, Y.-X.; Zhu, W.; Liu, G.; Zhang, Y.; Ye, Y.; Zhu, H.; Li, H.; Xia, J.: Revealing the role of oxygen vacancies in bimetallic PbBiO2Br atomic layers for boosting photocatalytic CO2 conversion. Appl. Catal. B 277, 119170 (2020). https://doi.org/10.1016/j.apcatb.2020.119170

    Article  Google Scholar 

  52. Martins, A.C.; Cazetta, A.L.; Pezoti, O.; Souza, J.R.B.; Zhang, T.; Pilau, E.J.; Asefa, T.; Almeida, V.C.: Sol–gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram. Int. 43, 4411–4418 (2017). https://doi.org/10.1016/j.ceramint.2016.12.088

    Article  Google Scholar 

  53. Gao, X.; Ren, P.-G.; Wang, J.; Ren, F.; Dai, Z.; Jin, Y.-L.: Fabrication of visible-light responsive TiO2@C photocatalyst with an ultra-thin carbon layer to efficiently degrade organic pollutants. Appl. Surf. Sci. 532, 147482 (2020). https://doi.org/10.1016/j.apsusc.2020.147482

    Article  Google Scholar 

  54. Ji, L.; Zhang, Y.; Miao, S.; Gong, M.; Liu, X.: In situ synthesis of carbon doped TiO2 nanotubes with an enhanced photocatalytic performance under UV and visible light. Carbon N Y 125, 544–550 (2017). https://doi.org/10.1016/j.carbon.2017.09.094

    Article  Google Scholar 

  55. Xin, Z.; Zhao, X.; Ji, H.; Ma, T.; Li, H.; Zhong, S.; Shen, Z.: Amorphous carbon-linked TiO2/carbon nanotube film composite with enhanced photocatalytic performance: the effect of interface contact and hydrophilicity. Chin. Chem. Lett. 32, 2151–2154 (2021). https://doi.org/10.1016/j.cclet.2020.11.054

    Article  Google Scholar 

  56. Kamil, A.M.; Mohammed, H.T.; Balakit, A.A.; Hussein, F.H.; Bahnemann, D.W.; El-Hiti, G.A.: Synthesis, characterization and photocatalytic activity of carbon nanotube/titanium dioxide nanocomposites. Arab. J. Sci. Eng. 43, 199–210 (2018). https://doi.org/10.1007/s13369-017-2861-z

    Article  Google Scholar 

  57. Askari, M.B.; Tavakoli Banizi, Z.; Seifi, M.; Bagheri Dehaghi, S.; Veisi, P.: Synthesis of TiO2 nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2/MWCNT nanocomposite. Optik (Stuttg) 149, 447–454 (2017). https://doi.org/10.1016/j.ijleo.2017.09.078

    Article  Google Scholar 

  58. Cheng, L.; Sun, L.; Xue, W.; Zeng, Z.; Li, S.: Adsorption equilibrium and kinetics of Pb(II) from aqueous solution by modified walnut shell. Environ. Prog. Sustain. Energy 35, 1724–1731 (2016). https://doi.org/10.1002/ep.12424

    Article  Google Scholar 

  59. de Benedetto, C.; Macario, A.; Siciliano, C.; Nagy, J.B.; de Luca, P.: Adsorption of reactive blue 116 dye and reactive yellow 81 dye from aqueous solutions by multi-walled carbon nanotubes. Materials 13, 1–14 (2020). https://doi.org/10.3390/ma13122757

    Article  Google Scholar 

  60. Fernandez, M.E.; Ledesma, B.; Román, S.; Bonelli, P.R.; Cukierman, A.L.: Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresour. Technol. 183, 221–228 (2015). https://doi.org/10.1016/j.biortech.2015.02.035

    Article  Google Scholar 

  61. Selvi, N.; Sankar, S.; Dinakaran, K.: Effect of shell ZnO on the structure and optical property of TiO2 core@shell hybrid nanoparticles. J. Mater. Sci. Mater. Electron. 26, 2271–2277 (2015). https://doi.org/10.1007/s10854-015-2680-5

    Article  Google Scholar 

  62. Xu, F.; Chen, J.; Kalytchuk, S.; Chu, L.; Shao, Y.; Kong, D.; Chu, K.-H.; Sit, P.H.-L.; Teoh, W.Y.: Supported gold clusters as effective and reusable photocatalysts for the abatement of endocrine-disrupting chemicals under visible light. J. Catal. 354, 1–12 (2017). https://doi.org/10.1016/j.jcat.2017.07.027

    Article  Google Scholar 

Download references

Funding

Not available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dahlang Tahir.

Ethics declarations

Conflict of interest

The authors declared no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armynah, B., Hajar, S., Rahmat, R. et al. Structural Properties and Degradation Efficiency Photocatalyst-based Composite Titanium Dioxide/Activated Carbon by Charge Trap System for Groundwater Reach Phenol Treatment. Arab J Sci Eng 48, 8693–8704 (2023). https://doi.org/10.1007/s13369-022-07312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07312-4

Keywords

Navigation