Skip to main content

Advertisement

Log in

Synthesis, Characterization and Photocatalytic Activity of Carbon Nanotube/Titanium Dioxide Nanocomposites

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Various multi-wall carbon nanotube (MWCNT)/titanium dioxide nanocomposites were synthesized using a low-temperature sol–gel method and a simple evaporation and drying process. Various techniques such as X-ray diffraction, energy-dispersive X-ray analysis, UV–visible diffuse reflectance spectroscopy, and scanning electron microscopy were used to confirm the structures of the newly synthesized nanocomposites. The photocatalytic activity of the new nanocomposites was investigated by using them as catalysts for the degradation of Bismarck brown R dye. The maximum rate of BBR photodegradation was achieved with a composite with a \(\hbox {MWCNT}/\hbox {TiO}_{2} \) ratio of 0.5% (w/w). The photocatalytic activity of \( \hbox {TiO}_{2} \) was improved in the presence of the new MWCNT nanocomposite. The synthesized nanocomposite shows an obvious red shift compared to \( \hbox {TiO}_{2} \). The band gap of \( \hbox {TiO}_{2} \) was reduced from 3.25 to 2.8 eV in the presence of MWCNTs (0.5 wt%). Evidently, the recombination of photogenerated electron–hole pairs could be retarded in the presence of a MWCNT/\(\hbox {TiO}_{2} \) nanocomposite. Moreover, MWCNTs can control \(\hbox {TiO}_{2} \) particles’ morphology within the MWCNT/\(\hbox {TiO}_{2} \) nanocomposite by acting as a dispersing support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaharia, C.; Suteu, D.; Muresan, A.; Muresan, R.; Popescu, A.: Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide. Environ. Eng. Manag. J. 8, 1359–1369 (2009)

    Google Scholar 

  2. Shaheed, M.A.; Hussein, F.H.: Absorption of reactive black 5 on synthesized titanium dioxide nanoparticles: equilibrium isotherm and kinetic studies. J. Nanopart. (2014). doi:10.1155/2014/198561

    Google Scholar 

  3. Masciangioli, T.; Zhang, W.X.: Environmental technologies at the nanoscale. Environ. Sci. Technol. 37(5), 102A–108A (2003)

    Article  Google Scholar 

  4. Mansoori, G.A.; Vakili-Nezhaad, G.R.; Ashrafi, A.R.: Some mathematical concepts applicable in nanothermodynamics. Int. J. Pure Appl. Math. Sci. 2, 58–61 (2005)

    Google Scholar 

  5. Ajmal, A.; Majeed, I.; Malik, R.N.; Idriss, H.; Nadeem, M.A.: Principles and mechanisms of photocatalytic dye degradation on \( \text{TiO}_{2} \) based photocatalysts: a comparative overview. RSC Adv. 4, 37003–37026 (2014)

    Article  Google Scholar 

  6. Yang, Z.; Ahmad, W.; Chu, L.; Al-bahrani, M.R.; Tu, F.; Wang, Y.; Zhang, H.; Wang, X.; Su, J.; Liu, N.; Li, L.; Yang, C.; Gao, Y.: Three-dimensional nanocomposite formed by hydrophobic multiwalled carbon nanotubes threading titanium dioxide as the counter electrode of enhanced performance dye-sensitized solar cells. RSC Adv. 6, 55071–55078 (2016)

    Article  Google Scholar 

  7. Bakhshayesh, A.M.; Mohammadi, M.R.; Fray, D.J.: Controlling electron transport rate and recombination process of \( \text{TiO}_{2} \) dye-sensitized solar cells by design of double-layer films with different arrangement modes. Electrochim. Acta 78, 384–391 (2012)

    Article  Google Scholar 

  8. Peng, X.; Sfeir, M.Y.; Zhang, F.; Misewich, J.A.; Wong, S.S.: Covalent synthesis and optical characterization of double-walled carbon nanotube–nanocrystal heterostructures. J. Phys. Chem. C 114, 8766–8773 (2010)

    Article  Google Scholar 

  9. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  10. Oha, W.C.; Zhang, F.J.; Lim, C.S.; Chen, M.L.: Microstructures and photonic effects of titania dispersed inside/outside carbon nanotube composites derived from different titanium alkoxide precursors. J. Ceram. Process. Res. 11, 479–484 (2010)

    Google Scholar 

  11. Amin, M.T.; Alazba, A.A.; Manzoor, U.: A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv. Mater. Sci. Eng. (2014). doi:10.1155/2014/825910

    Google Scholar 

  12. Ong, Y.T.; Ahmad, A.L.; Zein, S.H.S.; Tan, S.H.: A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz. J. Chem. Eng. 27, 227–242 (2010)

    Article  Google Scholar 

  13. Liu, X.; Wang, M.; Zhang, S.; Pan, B.: Application potential of carbon nanotubes in water treatment: a review. J. Environ. Sci. 25, 1263–1280 (2013)

    Article  Google Scholar 

  14. Leary, R.; Westwood, A.: Carbonaceous nanomaterials for the enhancement of \( \text{TiO}_{2} \) photocatalysis. Carbon 49, 741–772 (2011)

    Article  Google Scholar 

  15. Shofner, M.L.; Khabashesku, V.N.; Barrera, E.V.: Processing and mechanical properties of fluorinated single-wall carbon nanotube–polyethylene composites. Chem. Mater. 18, 906–913 (2006)

    Article  Google Scholar 

  16. Kamil, A.M.; Hussein, F.H.; Halbus, A.F.; Bahnemann, D.W.: Preparation, characterization, and photocatalytic applications of MWCNTs/\(\text{TiO}_{2} \) composite. Int. J. Photoenergy (2014). doi:10.1155/2014/475713

    Google Scholar 

  17. Xie, X.; Kretschmer, K.; Wang, G.: Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering. Nanoscale 7, 13278–13292 (2015)

    Article  Google Scholar 

  18. Zhang, N.; Yang, M.-Q.; Liu, S.; Sun, Y.; Xu, Y.-J.: Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 115, 10307–10377 (2015)

    Article  Google Scholar 

  19. Abdulrazzak, F.H.; Hussein, F.H.; Alkaim, A.F.; Ivanova, I.; Lexei, A.; Emeline, V.; Bahnemannd, D.W.: Sonochemical/hydration–dehydration synthesis of Pt-\(\text{TiO}_{2}\) NPs/decorated carbon nanotubes with enhanced phototcatalytic hydrogen production activity. Photochem. Photobiol. Sci. 15, 1347–1357 (2016)

    Article  Google Scholar 

  20. Scherrer, P.: Bestimmung der grösse und der inneren struktur von kolloidteilchen mittels röntgenstrahlen, nachrichten von der gesellschaft der wissenschaften, göttingen. Math. Phys. Kl. 2, 98–100 (1918)

    Google Scholar 

  21. Kubelka, P.; Munk, F.: Ein beitrag zur optik der farbanstriche. Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

  22. Krishnakumar, B.; Swaminathan, M.: Influence of operational parameters on photocatalytic degradation of a genotoxic azo dye acid violet 7 in aqueous ZnO suspensions. Spectrochim. Acta A 81, 739–744 (2011)

    Article  Google Scholar 

  23. Graupner, R.: Raman spectroscopy of covalently functionalized single-wall carbon nanotubes. J. Raman Spectrosc. 38, 673–683 (2007)

    Article  Google Scholar 

  24. Gomez, V.; Irusta, S.; Lawal, O.B.; Adams, W.W.; Hauge, R.H.; Dunnilla, C.W.; Barron, A.R.: Enhanced purification of carbon nanotubes by microwave and chlorine cleaning procedures. RSC Adv. 6, 1–8 (2016)

    Article  Google Scholar 

  25. Mirershadi, S.; Mortazavi, S.Z.; Reyhani, A.; Moniri, N.; Novinrooz, A.J.: Effective condition for purification of multi-walled carbon nanotubes by nitric acid. Synth. React. Inorg. Metal-Org. Nano-Met. Chem. 39, 312–316 (2009)

    Google Scholar 

  26. Yudianti, R.; Onggo, H.; Sudirman: Saito, Y.; Iwata, T.; Azuma, J.: Analysis of functional group sited on multi-wall carbon nanotube surface. Open Mater. Sci. J. 5, 242–247 (2011)

    Article  Google Scholar 

  27. Yu, J.; Ma, T.; Liu, S.: Enhanced photocatalytic activity of mesoporous \( \text{TiO}_{2} \) aggregates by embedding carbon nanotubes as electron-transfer channel. Phys. Chem. Chem. Phys. 13, 3491–3501 (2011)

    Article  Google Scholar 

  28. Choi, H.C.; Jung, Y.M.; Kim, S.B.: Characterization of Raman spectra of size-selected \( \text{TiO}_{2} \) nanoparticles by two-dimensional correlation spectroscopy. Bull. Korean Chem. Soc. 25, 426–428 (2004)

    Article  Google Scholar 

  29. Xie, Y.; Heo, S.H.; Yoo, S.H.: Synthesis and photocatalytic activity of anatase \( \text{TiO}_{2} \) nanoparticles-coated carbon nanotubes. Nanoscale Res. Lett. 5, 603–607 (2010)

    Article  Google Scholar 

  30. Woan, K.; Pyrgiotakis, G.; Sigmund, W.: Photocatalytic carbon-nanotube-\(\text{TiO}_{2} \) composites. Adv. Mater. 21, 2233–2239 (2009)

    Article  Google Scholar 

  31. Wang, A.; Wang, Y.; Yu, W.; Huang, Z.; Fang, Y.; Long, L.; Song, Y.; Cifuentes, M.P.; Humphrey, M.G.; Zhang, L.; Shaoc, J.; Zhang, C.: \( \text{TiO}_{2} \)-multi-walled carbon nanotube nanocomposites: hydrothermal synthesis and temporally-dependent optical properties. RSC Adv. 6, 20120–20127 (2016)

    Article  Google Scholar 

  32. Zhang, H.B.; Lin, G.D.; Zhou, Z.H.; Dong, X.; Chen, T.: Raman spectra of MWCNTs and MWCNT-based \(\text{H}_{2}\)-adsorbing system. Carbon 40, 2429–2436 (2002)

    Article  Google Scholar 

  33. Yu, Y.; Yu, J.C.; Yu, J.G.; Kwok, Y.C.; Che, Y.K.; Zhao, J.C.; Ding, L.; Ge, W.K.; Wong, P.K.: Enhancement of photocatalytic activity of mesoporous \( \text{TiO}_{2} \) by using carbon nanotubes. Appl. Catal. A Gen. 289, 186–196 (2005)

    Article  Google Scholar 

  34. Abd Hamid, S.B.; Tan, T.L.; Lai, C.W.; Samsudin, E.M.: Multiwalled carbon nanotube/\(\text{TiO}_{2} \) nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye. Chin. J. Catal. 35, 2014–2019 (2014)

    Article  Google Scholar 

  35. Abdulrazzak, F.H.: Enhance photocatalytic activity of \( \text{TiO}_{2} \) by carbon nanotubes. Int. J. ChemTech Res. 9, 431–443 (2016)

    Google Scholar 

  36. Shahrezaeia, F.; Pakravanb, P.; Hemati Azandaryanic, A.; Pirsahebe, M.; Mansouri, A.M.: Preparation of multi-walled carbon nanotube-doped \( \text{TiO}_{2} \) composite and its application in petroleum refinery wastewater treatment. Desalin. Water Treat. 57, 14443–14452 (2016)

    Article  Google Scholar 

  37. Yao, Y.; Li, G.; Ciston, S.; Lueptow, R.M.; Gray, K.A.: Photoreactive \( \text{TiO}_{2}\)/carbon nanotube composites: synthesis and reactivity. Environ. Sci. Technol. 42, 4952–4957 (2008)

    Article  Google Scholar 

  38. Vijayan, N.B.K.; Dimitrijevic, M.; Shapiro, D.F.; Wu, J.; Gray, K.A.: Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites. ACS Catal. 2, 223–229 (2012)

    Article  Google Scholar 

  39. Huang, X.; Feng, M.; Liu, X.: Design of bristle-like \( \text{TiO}_{2} \)-MWCNT nanotubes to improve the dielectric and interfacial properties of polymer-based composite films. RSC Adv. 4, 4985–4992 (2014)

    Article  Google Scholar 

  40. Barmala, M.; Moghadam, A.Z.; Omidkhah, M.R.: Increased photo-catalytic removal of sulfur using titania/MWCNT composite. J. Cent. South Univ. 22, 1066–1070 (2015)

    Google Scholar 

  41. Park, H.; Liu, S.; Salvador, P.A.; Rohrer, G.S.; Islam, M.F.: High visible-light photochemical activity of titania decorated on single-wall carbon nanotube aerogels. RSC Adv. 6, 22285–22294 (2016)

    Article  Google Scholar 

  42. Yu, J.; Ma, T.; Liu, S.: Enhanced photocatalytic activity of mesoporous \( \text{TiO}_{2} \) aggregates by embeddingcarbon nanotubes as electron-transfer channel. Phys. Chem. Chem. Phys. 13, 3491–3501 (2011)

    Article  Google Scholar 

  43. Hoffmann, M.R.; Martin, S.T.; Choi, W.Y.; Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  44. Wang, W.; Serp, P.; Kalck, P.; Faria, J.L.: Environmental applications of semiconductor photocatalysis. J. Mol. Catal. A Chem. 235, 194–199 (2005)

    Article  Google Scholar 

  45. Barberio, M.; Barone, P.; Imbrogno, A.; Bonanno, A.; Xu, F.: Optical and morphological properties of carbon nanotube-anatase nanocomposites: improvements in visible absorbance. Chem. Mater. Sci. 4, 78–84 (2014)

    Google Scholar 

  46. Lee, D.H.; Park, J.G.; Choi, K.J.; Choi, H.J.; Kim, D.W.: Preparation of brookite-type \( \text{TiO}_{2} \)/carbon nanocomposite electrodes for application to Li ion batteries. Eur. J. Inorg. Chem. 6, 878–882 (2008)

    Article  Google Scholar 

  47. Wu, C.H.; Kuo, C.Y.; Chen, S.T.: Synergistic effects between \( \text{TiO}_{2} \) and carbon nanotubes (CNTs) in a \( \text{TiO}_{2} \)/CNTs system under visible light irradiation. Environ. Technol. 34, 2513–2519 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Falah H. Hussein or Gamal A. El-Hiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamil, A.M., Mohammed, H.T., Balakit, A.A. et al. Synthesis, Characterization and Photocatalytic Activity of Carbon Nanotube/Titanium Dioxide Nanocomposites. Arab J Sci Eng 43, 199–210 (2018). https://doi.org/10.1007/s13369-017-2861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2861-z

Keywords

Navigation