Skip to main content
Log in

Study on the Mechanical Instability of Bidirectional Imperfect FG Sandwich Plates Subjected to In-Plane Loading

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Mechanical buckling response of bidirectional functionally graded (BDFG) imperfect sandwich plates by using a quasi-3D solution is studied in this paper. The formulation used in the present study includes indeterminate integral terms and involves only four unknown functions. The material properties of the sandwich plates change in the axial and thickness direction as well as the porosity following a defined distribution law. Imperfect BDFG sandwich plates are considered to be submitted to a variety of in-plane compressive loads, such as uniform, linear and exponential. The equations of motion are obtained from the virtual work principle and the critical buckling loads are computed for plates with different boundary conditions. The results of the current formulation are checked with those available in the literature where good agreement is found. Finally, the parametric study of the in-plane mechanical buckling are carried out, including the porosity, plate geometric parameters, boundary conditions and grading indexes. The results reveal that these parameters have a great influence on the buckling response of BDFG porous sandwich plates. These results can serve as reference solutions for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Singh, S.J.; Nataraj, C.; Harsha, S.P.: Nonlinear dynamic analysis of a sandwich plate with S-FGM face sheets and homogeneous core subjected to harmonic excitation. J. Sandwich Struct. Mater. 23(6), 1831–1869 (2021)

    Article  Google Scholar 

  2. Thai, H.-T.; Kim, S.-E.: A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128, 70–86 (2015)

    Article  Google Scholar 

  3. Njim, EK.; Sadeq, H.; Al-Waily, BM.: Analytical and numerical investigation of buckling load of functionally graded materials with porous metal of sandwich plate. Mater. Today: Proc. (2021) (in press)

  4. Trinh, M.-C.; Kim, S.-E.: Nonlinear thermomechanical behaviors of thin functionally graded sandwich shells with double curvature. Compos. Struct. 195, 335–348 (2018)

    Article  Google Scholar 

  5. Sofiyev, A.H.: Application of the FOSDT to solution of buckling problem of FGM sandwich conical shells under hydrostatic pressure. Compos. Part B Eng. 144, 88–98 (2018)

    Article  Google Scholar 

  6. Tung, H.V.: Thermal and thermomechanical postbuckling of FGM sandwich plates resting on elastic foundations with tangential edge constraints and temperature dependent properties. Compos. Struct. 131, 1028–1039 (2015)

    Article  Google Scholar 

  7. Trinh, M.-C.; Nguyen, D.-D.; Kim, S.-E.: Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature. Aerosp. Sci. Technol. 87, 119–132 (2019)

    Article  Google Scholar 

  8. Nguyen, D.-H.; Kim, S.-E.; Nguyen, D.K.; Do, Q.C.: Nonlinear buckling and post-buckling analysis of shear deformable stiffened truncated conical sandwich shells with functionally graded face sheets and a functionally graded porous core. J. Sandwich Struct. Mater. 23(7), 2700–2735 (2020)

    Google Scholar 

  9. Chana, D.Q.; Quan, T.Q.; Kim, S.-E.; Duc, N.D.: Nonlinear dynamic response and vibration of shear deformable piezoelectric functionally graded truncated conical panel in thermal environments. Eur. J. Mech. A Solids 77, 103795 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vivek, K.S.; Sreedhar Babu, T.; Sai Ram, K.S.: Buckling analysis of functionally graded thin square plates with triangular cut-out subjected to uni-axial loads. Mater. Today: Proc. 24, 662–672 (2020)

    Google Scholar 

  11. Xu, K.; Yuan, Y.; Li, M.: Buckling behaviour of functionally graded porous plates integrated with laminated composite faces sheets. Steel Compos. Struct. 32(5), 633–642 (2019)

    Google Scholar 

  12. Sayyad, A.S.; Ghugal, Y.M.: On the buckling of advanced composite sandwich rectangular plates. J. Sandwich Struct. Mater. 23(7), 3164–3193 (2021)

    Article  Google Scholar 

  13. Abdelrahman, W.G.: Effect of material transverse distribution profile on buckling of thinck functionally graded plates according to TSDT. Struct. Eng. Mech. 74(1), 83–90 (2020)

    Google Scholar 

  14. Hadji, L.; Avcar, M.; Zouatnia, N.: Natural frequency analysis of imperfect FG sandwich plates resting on Winkler-Pasternak foundation. Mater. Today: Proc. 53, 153–160 (2022)

    Google Scholar 

  15. Trinh, M.-C.; Kim, S.-E.: Deterministic and stochastic thermomechanical nonlinear dynamic responses of functionally graded sandwich plates. Compos. Struct. 274, 114359 (2021)

    Article  Google Scholar 

  16. Yin, S.; Yu, T.; Bui, T.; Zheng, X.; Tanaka, S.: In-plane material inhomogeneity of functionally graded plates: a higher- order shear deformation plate isogeometric analysis. Comp. Part B: Eng. 106, 273–284 (2016)

    Article  Google Scholar 

  17. Singh, S.J.; Harsha, S.P.: Exact solution for free vibration and buckling of sandwich S-FGM plates on pasternak elastic foundation with various boundary conditions. Int. J. Struct. Stab. Dyn. 19(3), 1950028 (2019)

    Article  MathSciNet  Google Scholar 

  18. Parida, S.; Mohanty, S.C.: Free vibration and buckling analysis of functionally graded plates resting on elastic foundation using higher order theory. Int. J. Struct. Stab. Dyn. 18(4), 1850049 (2018)

    Article  MathSciNet  Google Scholar 

  19. Belkhodja, Y.; Ouinas, D.; Zaoui, F.Z.; Fekirini, H.: An exponential-trigonometric higher order shear deformation theory (HSDT) for bending, free vibration, and buckling analysis of functionally graded materials (FGMs) plates. Adv. Compos. Lett. 28, 1–19 (2019)

    Google Scholar 

  20. Belkhodja, Y.; Ouinas, D.; Fekirini, H.; Viña Olay, J.A.; Achour, B.; Touahmia, M.; Boukendakdji, M.: A new hybrid HSDT for bending, free vibration, and buckling analysis of FGM plates (2D & quasi-3D). Smart Struct. Syst. 29(3), 395–420 (2022)

    Google Scholar 

  21. Nguyen, V.H.; Nguyen, T.K.; Thai, H.T.; Vo, T.H.: A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates. Compos. B Eng. 66, 233–246 (2014)

    Article  Google Scholar 

  22. Hadji, L.: Buckling analysis of sandwich plates with functionally graded porous layers using hyperbolic shear displacement model. Wind Struct. 32(1), 19–30 (2021)

    MathSciNet  Google Scholar 

  23. Hadji, L.; Avcar, M.: Free vibration analysis of fg porous sandwich plates under various boundary conditions. J. Appl. Comput. Mech. 7(2), 505–519 (2021)

    Google Scholar 

  24. Zghal, S.; Frikha, A.; Dammak, F.: Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Compos. Part B Eng. 150, 165–183 (2018)

    Article  MATH  Google Scholar 

  25. Moradi-Dastjerdi, R.; Malek-Mohammadi, H.: Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory. J. Sandw. Struct. Mater. 19, 736–769 (2017)

    Article  Google Scholar 

  26. Van Long, N.; Quoc, T.H.; Tu, T.M.J.: Bending and free vibration analysis of functionally graded plates using new eight unknown shear deformation theory by finite-element method. Int. J. Adv. Struct. Eng. 8(4), 391–399 (2016)

    Article  Google Scholar 

  27. Dhuria, M.; Grover Goyal, K.: Influence of porosity distribution on static and buckling responses of porous functionally graded plates. Structures 34, 1458–1474 (2021)

    Article  Google Scholar 

  28. Adhikari, B.; Dash, P.; Singh, B.N.: Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory. Compos. Sruct. 251, 112597 (2020)

    Article  Google Scholar 

  29. Adhikari, B.; Singh, B.N.: Buckling characteristics of laminated functionally-graded cnt-reinforced composite plate under nonuniform uniaxial and biaxial in-plane edge loads. Int. J. Struct. Stab. Dyn. 20(2), 2050022 (2020)

    Article  MathSciNet  Google Scholar 

  30. Nguyen, Q.H.; Nguyen, L.B.; Nguyen, H.B.; Nguyen-Xuan, H.: A three-variable high order shear deformation theory for isogeometric free vibration, buckling and instability analysis of FG porous plates reinforced by graphene platelets. Compos. Struct. 245, 112321 (2020)

    Article  Google Scholar 

  31. Kianian, O.; Sarrami-Foroushani, S.; Azhari, S.: Buckling analysis of functionally graded plates based on two-variable refined plate theory using the bubble finite strip method. AUT Journal of Civil Engineering. 1(2), 145–152 (2017)

    Google Scholar 

  32. Liu, Z.; Wang, C.; Duan, G.; Tan, J.: A new refined plate theory with isogeometric approach for the static and buckling analysis of functionally graded plates. Int. J. Mech. Sci. 105036, 161–162 (2019)

    Google Scholar 

  33. Li, D.; Deng, Z.; Chen, G.; Ma, T.: Mechanical and thermal buckling of exponentially graded sandwich plates. J. Therm. Stress. 41, 883–902 (2018)

    Article  Google Scholar 

  34. Bouazza, M.; Zenkour, A.M.; Benseddiq, N.: Closed-from solutions for thermal buckling analyses of advanced nanoplates according to a hyperbolic four-variable refined theory with small-scale effects. Acta Mech. 229, 2251–2265 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Trinh, M.-C.; Kim, S.-E.: A three variable refined shear deformation theory for porous functionally graded doubly curved shell analysis. Aerosp. Sci. Technol. 94, 105356 (2019)

    Article  Google Scholar 

  36. Akavci, S.S.: Mechanical behavior of functionally graded sandwich plates on elastic foundation. Compos. B Eng. 96, 136–152 (2016)

    Article  Google Scholar 

  37. Thai, H.-T.; Kim, S.-E.: A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates. Compos. Struct. 99, 172–180 (2013)

    Article  Google Scholar 

  38. Shahbaztabar, A.; Arteshyar, K.: Buckling analysis of functionally graded plates partially resting on elastic foundation using the differential quadrature element method. Acta. Mech. Sin. 35(1), 174–189 (2019)

    Article  MathSciNet  Google Scholar 

  39. Van Do, T.; Nguyen, D.K.; Nguyen, D.D.; Doan, D.H.; Bui, T.Q.: Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory. Thin-Walled Struct. 119, 687–699 (2017)

    Article  Google Scholar 

  40. Haciyev, V.C.; Sofiyev, A.H.; Kuruoglu, N.: Free bending vibration analysis of thin bidirectionally exponentially graded orthotropic rectangular plates resting on two-parameter elastic foundations. Compos. Struct. 15, 372–377 (2018)

    Article  Google Scholar 

  41. Ahlawat, N.; Lal, R.: Buckling and vibrations of multi-directional functionally graded circular plate resting on elastic foundation. Procedia Eng. 144, 85–93 (2016)

    Article  MATH  Google Scholar 

  42. Esmaeilzadeh, M.; Kadkhodayan, M.: Dynamic analysis of stiffened bidirectional functionally graded plates with porosities under a moving load by dynamic relaxation method with kinetic damping. Aerosp. Sci. Technol. 93, 105333 (2019)

    Article  Google Scholar 

  43. Hong, N.T.: Nonlinear static bending and free vibration analysis of bidirectional functionally graded material plates. Int. J. Aerosp. Eng. 20, 16 (2020)

    Google Scholar 

  44. Lieu, Q.X.; Lee, D.; Kang, J.; Lee, J.: NURBS-based modeling and analysis for free vibration and buckling problems of in-plane bi-directional functionally graded plates. Mech. Adv. Mater. Struct. 26(12), 1064–1080 (2018)

    Article  Google Scholar 

  45. Yang, H.S.; Dong, C.Y.; Wu, Y.H.: Postbuckling analysis of multi-directional perforated FGM plates using NURBS-based IGA and FCM. Appl. Math. Model. 84, 466–500 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chen, X.; Chen, L.; Huang, S.; Li, M.; Li, X.: Nonlinear forced vibration of in-plane bi-directional functionally graded materials rectangular plate with global and localized geometrical imperfections. Appl. Math. Model. 93, 443–466 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hussein, O.; Mulani, S.: Nonlinear aeroelastic stability analysis of in-plane functionally graded metal nanocomposite thin panels in supersonic flow. Thin-Walled Struct. 139, 398–411 (2019)

    Article  Google Scholar 

  48. Singh, S.J.; Harsha, S.P.: Buckling analysis of FGM plates under uniform, linear and non-linear in-plane loading. J. Mech. Sci. Technol. 33(4), 1–7 (2019)

    Article  Google Scholar 

  49. Sah, S.K.; Ghosh, A.: Influence of porosity distribution on free vibration and buckling analysis of multi-directional functionally graded sandwich plates. Compos. Struct. 279, 114795 (2022)

    Article  Google Scholar 

  50. Achouri, F.; Benyoucef, S.; Bourada, F.; Bachir Bouiadjra, R.; Tounsi, A.: Robust quasi 3D computational model for mechanical response of FG thick sandwich plate. Struct. Eng. Mech. 70(5), 571–589 (2019)

    Google Scholar 

  51. Ait Amar, M.; Abdelaziz, H.H.; Tounsi, A.: An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J. Sandwich Struct. Mater. 16, 293–318 (2014)

    Article  Google Scholar 

  52. Le, C.I.; Tran, Q.D.; Pham, V.N.; Nguyen, D.K.: Free vibration and buckling of bidirectional functionally graded sandwich plates using an efficient Q9 element. Vietnam J. Mech. 43(3), 277–295 (2021)

    Google Scholar 

  53. Boulal, A.; Bensattalah, T.; Karas, A.; Zidour, M.; Heireche, H.; Adda Bedia, E.A.: Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton’s energy principle. Struct. Eng. Mech. 73(2), 209–223 (2020)

    Google Scholar 

  54. Katariya, P.V.; Panda, S.K.: Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect. Steel Compos. Struct. 34(2), 279–288 (2020)

    Google Scholar 

  55. Belarbi, M.-O.; Houari, M.S.A.; Daikh, A.A.; Gargs, A.; Merzouki, T.; Chalak, H.D.; Hirane, H.: Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory. Compos. Struct. 264, 113712 (2021)

    Article  Google Scholar 

  56. Civilek, O.; Avcar, M.: Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng. Comput. 38, 489–521 (2022)

    Article  Google Scholar 

  57. Zhang, J.; Ullah, S.; Gao, Y.; Avcar, M.; Civalek, O.: Analysis of orthotropic plates by the two-dimensional generalized FIT method. Comput. Concr. 26(5), 421–427 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Benyoucef.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflict of interest with respect to the research, authorship and/or publication of this article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabouche, A., Bachir Bouiadjra, R., Bachiri, A. et al. Study on the Mechanical Instability of Bidirectional Imperfect FG Sandwich Plates Subjected to In-Plane Loading. Arab J Sci Eng 47, 13655–13672 (2022). https://doi.org/10.1007/s13369-022-07203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07203-8

Keywords

Navigation