Skip to main content
Log in

Homology Modeling and Analysis of Vacuolar Aspartyl Protease from a Novel Yeast Expression Host Meyerozyma guilliermondii Strain SO

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In eukaryotes, aspartyl protease (PEP4) is a localized hydrolase. PEP4 was recently identified from Meyerozyma guilliermondii strain SO (MgPEP4), a novel yeast expression host. But little is known about the structural properties and its catalytic mechanism. Multiple sequence alignment with other yeast aspartyl proteases revealed the conserved regions of MgPEP4 which belongs to the pepsin/proteinase_A_fungi superfamily. Two catalytic aspartic acid residues (Asp112 and Asp297) existed as a single copy at the DTG motif, a pattern of short conserved amino acids sequence. Homology modeling of MgPEP4 was done using Saccharomyces cerevisiae PEP4 (PDB ID: 1DPJ) as template. Using in silico analysis, we aim to reveal its stability by way of disulfide bridge formation and the catalytic mechanism of MgPEP4 with a universal protease inhibitor (pepstatin A). Structurally, only two out of the four conserved cysteine residues of the polypeptide were involved in intramolecular disulfide bridges in the validated structure as opposed to two disulfide bridges present in the template which conferred a critical stabilizing role in the protein structures. Pepstatin A (pepA) was docked at the substrate-binding site and showed hydrophilic interactions with the essential catalytic aspartic residues, which preliminarily proved the catalytic mechanism of MgPEP4. In conclusion, understanding of the structure and catalytic mechanism of MgPEP4 at the molecular level have given an insight about its role in the degradation of recombinant proteins in M. guilliermondii strain SO as an expression host as well as its potential applications in food, beverages, baking, leather and pharmaceutical industries. Further development of a new yeast strain could be done using MgPEP4 as the target protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brett, C.L.; Kallay, L.; Hua, Z.; Green, R.; Chyou, A.; Zhang, Y.; Graham, T.R.; Donowitz, M.; Rao, R.: Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae. PLoS ONE 6, e17619 (2011). https://doi.org/10.1371/journal.pone.0017619

    Article  Google Scholar 

  2. Stanforth, K.J.; Wilcox, M.D.; Chater, P.I.; Brownlee, I.A.; Zakhour, M.I.; Banecki, K.M.R.M.; Pearson, J.P.: Pepsin properties, structure, and its accurate measurement: a narrative review. Ann. Esophagus (2021). https://doi.org/10.21037/aoe-20-95

    Article  Google Scholar 

  3. Yegin, S.; Dekker, P.: Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition and engineering. Dairy Sci. Technol. 93, 565–594 (2013). https://doi.org/10.1007/s13594-013-0137-2

    Article  Google Scholar 

  4. Hsiao, N.W.; Chen, Y.; Kuan, Y.C.; Lee, S.K.; Chan, H.H.; Kao, C.H.: Purification and characterization of aspartic protease from the Rhizopus oryzae protease extract, Peptidase R. Electron J. Biotechnol. 17, 89–94 (2014). https://doi.org/10.1016/j.ejbt.2014.02.002

    Article  Google Scholar 

  5. Minina, E.A.; Moschou, P.N.; Bozhkov, P.V.: Limited and digestive proteolysis: crosstalk between evolutionary conserved pathways. New Phytol. 215, 958–964 (2017)

    Article  Google Scholar 

  6. Li, S.C.; Kane, P.M.: The yeast lysosome-like vacuole: endpoint and crossroads. Biochim. Biophys. Acta 1793, 650–663 (2009). https://doi.org/10.1016/j.bbamcr.2008.08.003

    Article  Google Scholar 

  7. Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D.: The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 46, D624–D632 (2018). https://doi.org/10.1093/nar/gkx1134

    Article  Google Scholar 

  8. Davies, D.R.: The structure and function of aspartic proteinases. Annu. Rev. Biophys. Biophys. Chem. 19, 189–215 (1990)

    Article  Google Scholar 

  9. Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.; Zhang, X.C.; Tang, J.: Structure of memapsin 2 (b-secretase) complexed with inhibitor: a template to design drugs for Alzheimer’s disease. Science 290, 150–153 (2000). https://doi.org/10.1126/science.290.5489.150

    Article  Google Scholar 

  10. Craik, C.S.; Page, M.J.; Madison, E.L.: Proteases as therapeutics. Biochem. J. 435(1), 1–16 (2011). https://doi.org/10.1042/bj20100965

    Article  Google Scholar 

  11. De Souza, P.M.; de Assis Bittencourt, M.L.; Caprara, C.C.; de Freitas, M.; de Almeida, R.P.C.; Silveira, D.; Fonseca, Y.M.; Filho, E.X.F.; Pessoa Junior, A.; Magalhães, P.O.: A biotechnology perspective of fungal proteases. J. Microbiol. 46, 337–346 (2015). https://doi.org/10.1590/S1517-838246220140359

    Article  Google Scholar 

  12. Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M.: Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int. J. Nanomed. 14, 5541–5554 (2019). https://doi.org/10.2147/IJN.S200490

    Article  Google Scholar 

  13. Jones, E.W.: Vacuolar proteases and proteolytic artifacts in Saccharomyces cerevisiae. Meth. Enzymol (2002). https://doi.org/10.1016/s0076-6879(02)51844-9

    Article  Google Scholar 

  14. Hecht, K.A.; O’Donnell, A.F.; Jeffrey, L.B.: The proteolytic landscape of the yeast vacuole. Cell Logist. (2014). https://doi.org/10.4161/cl.28023

    Article  Google Scholar 

  15. Oslan, S.N.; Salleh, A.B.; Rahman, R.A.; Zaliha, R.N.; Leow, T.C.; Sukamat, H.; Basri, M.: A newly isolated yeast as an expression host for recombinant lipase. Cell. Mol. Biol. Lett. 20(2), 279–293 (2015). https://doi.org/10.1515/cmble-2015-0015

    Article  Google Scholar 

  16. Lorrine, O.E.; Rahman, A.N.Z.R.A.; Tan, J.S.; Farhana, R.K.; Salleh, A.B.; Oslan, S.N.: Determination of putative vacuolar proteases, PEP4 and PRB1 in a novel yeast expression host Meyerozyma guilliermondii strain SO using bioinformatics tools. Pertanika J. Sci. Technol. 30(1), 777–797 (2022). https://doi.org/10.47836/pjst.30.1.42

    Article  Google Scholar 

  17. Petrey, D.; Honig, B.: Protein structure prediction: inroads to biology. Mol. Cell. 20, 811–819 (2005). https://doi.org/10.1016/j.molcel.2005.12.005

    Article  Google Scholar 

  18. Porto, W.F.; Pires, A.S.; Franco, O.L.: Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnol. Adv. 35(3), 337–349 (2017). https://doi.org/10.1016/j.biotechadv.2017.02.001

    Article  Google Scholar 

  19. Xu, J.; Li, M.; Kim, D.; Xu, Y.: Raptor: Optical protein threading by linear programming. J. Bioinform. Comput. Biol. 01(01), 95–117 (2003). https://doi.org/10.1142/s0219720003000186

    Article  Google Scholar 

  20. Sommer, I.; Toppo, S.; Sander, O.: Improving the quality of protein structure models by selecting from alignment alternatives. BMC Bioinformatics 7, 364 (2006). https://doi.org/10.1186/1471-2105-7-364

    Article  Google Scholar 

  21. Ma, J.; Peng, J.; Wang, S.; Jinbo, Xu.: A conditional neural fields model for protein threading. Bioinformatics 28(2), 59–66 (2012). https://doi.org/10.1093/bioinformatics/bts213

    Article  Google Scholar 

  22. Zhang, C.; Wei Zheng, S.M.; Mortuza, Y.L.; Zhang, Y.: DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins. Bioinformatics 36(7), 2105–2112 (2020). https://doi.org/10.1093/bioinformatics/btz863

    Article  Google Scholar 

  23. Xu, Y.; Liu, Z.; Cai, L.; Xu, D.: Protein structure prediction by protein threading. In: Xu, Y.; Xu, D.; Liang, J. (Eds.) Computational methods for protein structure prediction and modeling. Biological and medical physics, Biomedical engineering. Springer, New York (2007)

    Google Scholar 

  24. Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E.: The Phyre2 web portal for protein modelling, prediction and analysis. Nat Protoc 10, 845–858 (2015). https://doi.org/10.1038/nprot.2015.053

    Article  Google Scholar 

  25. Galgóczy, L.; Borics, A.; Virágh, M.; Ficze, H.; Váradi, G.; Kele, Z.; Marx, F.: Structural determinants of Neosartorya fischeri antifungal protein (NFAP) for folding, stability and antifungal activity. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-02234-w

    Article  Google Scholar 

  26. Creighton, T.E.: Disulphide bonds and protein stability. BioEssays 8(2–3), 57–63 (1988). https://doi.org/10.1002/bies.950080204

    Article  Google Scholar 

  27. Tidor, B.; Karplus, M.: The contribution of cross-links to protein stability: a normal mode analysis of the configurational entropy of the native state. Proteins Struct. Funct. Genet. 15(1), 71–79 (1993). https://doi.org/10.1002/prot.340150109

    Article  Google Scholar 

  28. Nakka, M.; Iyer, R.B.; Bachas, L.G.: Intersubunit disulfide interactions play a critical role in maintaining the thermostability of glucose-6-phosphate dehydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. Proteins 25(1), 17–21 (2006). https://doi.org/10.1007/s10930-006-0015-3

    Article  Google Scholar 

  29. Petersen, T.N.; Brunak, S.; Von Heijne, G.; Nielsen, H.: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods. 8, 785–786 (2011). https://doi.org/10.1038/nmeth.1701

    Article  Google Scholar 

  30. Delano, W. (2002). The PyMOL Molecular Graphics System, DeLano Scientific, Palo Alto, CA, USA. http://www.pymol.org.

  31. Huang, C.C.; Meng, E.C.; Morris, J.H.; Petterson, E.F.; Ferrin, T.E.: Enhancing UCSF Chimera through web services. Nucleic Acids Res. 42, 478–484 (2014)

    Article  Google Scholar 

  32. Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389 (1997). https://doi.org/10.1093/nar/25.17.3389

    Article  Google Scholar 

  33. Colovos, C.; Yeates, T.O.: Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2(9), 1511–1519 (1993). https://doi.org/10.1002/pro.5560020916

    Article  Google Scholar 

  34. Bowie, J.U.; Lüthy, R.; Eisenberg, D.A.: Method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016), 164–170 (1991). https://doi.org/10.1126/science.1853201

    Article  Google Scholar 

  35. Lüthy, R.; Bowie, J.U.; Eisenberg, D.: Assessment of protein models with three-dimensional Profiles. Nature 356, 83–85 (1992). https://doi.org/10.1038/356083a0

    Article  Google Scholar 

  36. Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M.: PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993). https://doi.org/10.1107/S0021889892009944

    Article  Google Scholar 

  37. Laskowski, R.A.; Rullmann, J.A.C.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M.: AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR. 8(4), 477–486 (1996). https://doi.org/10.1007/BF00228148

    Article  Google Scholar 

  38. Ramachandran, G.N.; Sasisekharan, V.: Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–437 (1968). https://doi.org/10.1016/s0065-3233(08)60402-7

    Article  Google Scholar 

  39. Yang, J.; Quail, J.W.: Structure of the Rhizomucor miehei aspartic proteinase complexed with the inhibitor pepstatin A at 2.7 Å resolution. Acta Crystallogr. 55(3), 625–630 (1999). https://doi.org/10.1107/s0907444998013961

    Article  Google Scholar 

  40. Trott, O.; Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010). https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

  41. Laskowski, R.A.; Swindells, M.B.: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011). https://doi.org/10.1021/ci200227u

    Article  Google Scholar 

  42. Skolnick, J.; Fetrow, J.; Klolinski, A.: Structural genomics and its importance for gene function analysis. Nat. Biotechnol. 18, 283–287 (2000). https://doi.org/10.1038/73723

    Article  Google Scholar 

  43. Parr, C.L.; Keates, R.A.B.; Bryksa, B.C.; Masahiro, O.; Rickey, Y.Y.: The structure and function of Saccharomyces cerevisiae proteinase A. Yeast 24, 467–480 (2007). https://doi.org/10.1002/yea.1485

    Article  Google Scholar 

  44. Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A.: Protein identification and analysis tools on the ExPASy server. In: Walker, J.M. (Ed.) The Proteomics Protocols Handbook, pp. 571–607. Humana Press, New Jersey (2005)

    Chapter  Google Scholar 

  45. Zitare, U.A.; Habib, M.H.; Rozeboom, H.; Mascotti, M.L.; Todorovic, S.; Fraaije, M.W.: Mutational and structural analysis of an ancestral fungal dye-decolorizing peroxidase. FEBS J. 288(11), 3602–3618 (2021). https://doi.org/10.1111/febs.15687

    Article  Google Scholar 

  46. Kay, J.; Gustchina, A.; Li, M.; Phylip, L.H.; Lees, W.E.; Winther, J.R.; Wlodawer, A.: The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix. Nat. Struct. Biol. 7(2), 113–117 (2000)

    Article  Google Scholar 

  47. Kleywegt, G.J.; Jones, T.A.: Phi/Psi-Chology: Ramachandran revisited. Structure. 4(12), 1395–1400 (1996). https://doi.org/10.1016/S0969-2126(96)00147-5

    Article  Google Scholar 

  48. Laskowski, R.A.; MacArthur, M.W.; Thornton, J.M.: PROCHECK : validation of protein-structure coordinates. In: Arnold, E.; Himmel, D.M.; Rossmann, M.G. (Eds.) International tables for crystallography, pp. 684–687. Wiley, Hoboken (2012)

    Chapter  Google Scholar 

  49. Morris, A.L.; MacArthur, M.W.; Hutchinson, E.G.; Thornton, J.M.: Stereochemical quality of protein structure coordinates. Proteins 12, 345–364 (1992). https://doi.org/10.1002/prot.340120407

    Article  Google Scholar 

  50. Borelli, C.; Ruge, E.; Schaller, M.; Monod, M.; Korting, H.C.; Huber, R.; Maskos, K.: The crystal structure of the secreted aspartic proteinase 3 from Candida albicans and its complex with pepstatin A. Proteins 68(3), 738–748 (2007). https://doi.org/10.1002/prot.21425

    Article  Google Scholar 

  51. Parr, C.L.; Keates, R.A.B.; Bryksa, B.C.; Ogawa, M.; Yada, R.Y.: The structure and function of Saccharomyces cerevisiae proteinase A. Yeast 24(6), 467–480 (2007). https://doi.org/10.1002/yea.1485

    Article  Google Scholar 

  52. Barman, A.; Prabhakar, R.: Computational insights into substrate and Site specificities, catalytic mechanism, and protonation states of the catalytic Asp dyad of β-Secretase. Scientifica (2014). https://doi.org/10.1155/2014/598728

    Article  Google Scholar 

  53. McGillewie, L.; Ramesh, M.; Soliman, M.E.: Sequence, structural analysis and metrics to define the unique dynamic features of the flap regions among aspartic proteases. Proteins 36, 385–396 (2017). https://doi.org/10.1007/s10930-017-9735-9

    Article  Google Scholar 

  54. Tang, J.; Koelsch, G.: A possible function of the flaps of aspartic proteases: the capture of substrate side chains determines the specificity of cleavage positions. Protein Pept. Lett. 2, 257–266 (1995)

    Article  Google Scholar 

  55. Li, M.; Phylip, L.H.; Lees, W.E.; Winther, J.R.; Dunn, B.M.; Wlodawer, A.; Kay, J.; Gustchina, A.: The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix. Nat. Struct. Biol. 7, 113–117 (2000). https://doi.org/10.1038/72378

    Article  Google Scholar 

  56. Sevier, C.S.; Kaiser, C.A.: Formation and transfer of disulphide bonds in living cells. Nat. Rev. Mol. Cell Biol. 3(11), 836–847 (2002). https://doi.org/10.1038/nrm954

    Article  Google Scholar 

  57. Sepulveda, P.; Marciniszyn, J.; Liu, D.; Tang, J.: Primary structure of porcine pepsin. J. Biol. Chem. 250, 5082–5088 (1975). https://doi.org/10.1016/S0021-9258(19)41281-7

    Article  Google Scholar 

  58. Bech, A.M.; Foltmann, B.: Partial primary structure of Mucor miehei protease. Neth. Milk Dairy J. 35, 275–280 (1981)

    Google Scholar 

  59. Dreyer, T.; Halkier, B.; Svendsen, I.; Ottesen, M.: Primary structure of the aspartic proteinase A from Saccharomyces cerevisiae. Carlsberg Res. Commun. 51(1), 27–41 (1986). https://doi.org/10.1007/bf02907993

    Article  Google Scholar 

  60. Gustchina, A.; Li, M.; Phylip, L.H.; Wendy, E.L.; Kay, J.; Wlodawer, A.: An unusual orientation for Tyr75 in the active site of the aspartic proteinase from Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 295, 1020–1026 (2002). https://doi.org/10.1016/s0006-291x(02)00742-8

    Article  Google Scholar 

  61. Andreeva, N.S.; Rumsh, L.D.: Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Protein Sci. 10, 2439–2450 (2001). https://doi.org/10.1110/ps.25801

    Article  Google Scholar 

  62. Prasad, B.V.; Suguna, K.: Role of water molecules in the structure and function of aspartic proteinases. Acta. Crystallogr. 58, 250–259 (2002). https://doi.org/10.1107/S0907444901018327

    Article  Google Scholar 

  63. Tanaka, T.; Teo, K.S.L.; Lamb, K.M.; Harris, L.J.; Yada, R.Y.: Effect of replacement of the conserved Tyr75 on the catalytic properties of porcine pepsin A. Protein Pept. Lett. 5, 19–26 (1998)

    Google Scholar 

  64. Kufareva, I.; Abagyan, R.: Methods of protein structure comparison. Methods Mol. Biol. 857, 231–257 (2012). https://doi.org/10.1007/978-1-61779-588-6_10

    Article  Google Scholar 

  65. Rueda, M.; Orozco, M.; Totrov, M.; Abagyan, R.: A web tool for the superimposition of biomolecules and assemblies with rotational symmetry. BMC Struct. Biol. 13, 32 (2013). https://doi.org/10.1186/1472-6807-13-32

    Article  Google Scholar 

  66. Rao, G.N.; Rao, A.A.; Rao, P.S.; Muppalaneni, N.B.: A tool for the post data analysis of screened compounds derived from computer-aided docking scores. Bioinformatics 9(4), 207–209 (2013)

    Google Scholar 

  67. Umezawa, H.; Aoyagi, T.; Morishima, H.; Matsuzaki, M.; Hamada, M.: Pepstatin, a new pepsin inhibitor produced by Actinomycetes. J. Antibiot. (Tokyo) 23, 259–262 (1970). https://doi.org/10.7164/antibiotics.23.259

    Article  Google Scholar 

  68. Dostál, J.; Brynda, J.; Vaňková, L.; Zia, R.S.; Pichová, I.; Heidingsfeld, O.; Lepšík, M.: Structural determinants for subnanomolar inhibition of the secreted aspartic protease Sapp1p from Candida parapsilosis. J. Enzyme Inhib. Med. Chem. 36(1), 914–921 (2021). https://doi.org/10.1080/14756366.2021.1906664

    Article  Google Scholar 

  69. Dunn, B.M.; Gustchina, A.; Wlodawer, A.; Kay, J.: Subsite preferences of retroviral proteinases. Methods Enzymol. 241, 254–278 (1994). https://doi.org/10.1016/0076-6879(94)41068-2

    Article  Google Scholar 

  70. Dunn, M.B.; Goodenow, M.M.; Gustchina, A.; Wlodawer, A.: Retroviral proteases. Genome Biol. (2002). https://doi.org/10.1186/gb-2002-3-4-reviews3006

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all the principle investigators in Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia for providing constructive comments and advice for this project. The first author, OEL would like to thank the Ministry of Education, Nigeria for the opportunity to further her study.

Funding

This research work was funded by the Fundamental Research Grant Scheme Projects, (Code: FRGS/1/2019/STG05/UPM/02/1) from the Ministry of Higher Education Malaysia which was awarded to SNO, the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Nurbaya Oslan.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorrine, O.E., Rahman, R.N.Z.R.A., Tan, J.S. et al. Homology Modeling and Analysis of Vacuolar Aspartyl Protease from a Novel Yeast Expression Host Meyerozyma guilliermondii Strain SO. Arab J Sci Eng 48, 81–91 (2023). https://doi.org/10.1007/s13369-022-07153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07153-1

Keywords

Navigation