Skip to main content
Log in

Seismic Performance Assessment of Semi Active Tuned Mass Damper in an MRF Steel Building Including Nonlinear Soil–Pile–Structure Interaction

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study the efficiency of Semi Active Tuned Mass Damper (STMD) on seismic response reduction in a moment resisting frame steel building considering soil-pile-structure interaction is investigated in comparison with common Tuned Mass Damper (TMD). Substructure method is used for simulating the Soil-Pile-Structure interaction. p–y curves recommended by API are used for simulating the nonlinear spring coefficients. Damping ratio of STMD is optimized during dynamic loading simultaneously by using Groundhook Algorithm and a layered soil profile with varying stiffness (two and three layers) is considered. In addition, the mass ratio for STMD is assessed for obtaining the highest efficiency for STMD to mitigate the seismic vibration. The results indicated that, the STMD efficiency reduces when the soil stiffness is increased. TMDs performed poorly for seismic control of structural performance in comparison with STMDs when soil pile structure interaction was ignored. Finally, the optimized mass ratio considering soil-pile-structure interaction for STMD is evaluated, which have shown that a range of 3 to 5% is suitable for efficient design of STMDs. However, it is worth noting that the seismic responses of soil-pile structure systems under near-field and far-field earthquakes do not have significantly different effects on STMD performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jaisee, S.; Yue, F.; Ooi, Y.H.: A state-of-the-art review on passive friction dampers and their applications. Eng. Struct. 235, 112022 (2021). https://doi.org/10.1016/j.engstruct.2021.112022

    Article  Google Scholar 

  2. Valente, C.; Cardone, D.; Dolce, M.; Ponzo, F.: manside:shaking table tests of R/C frames with various passive control systems. 12Wcee, pp. 1–8 (2000)

  3. Saaed, T.E.; Nikolakopoulos, G.; Jonasson, J.E.; Hedlund, H.: A state-of-the-art review of structural control systems. JVC J. Vib. Control. 21, 919–937 (2015). https://doi.org/10.1177/1077546313478294

    Article  Google Scholar 

  4. Shanmuga Priya, D.; Cinitha, A.; Umesha, P.K.; Iyer, N.R.: A critical review on enhancing the seismic response of buildings with energy dissipation methods. J. Struct. Eng. 42, 218–228 (2015)

    Google Scholar 

  5. Housner, G.W.; Bergman, L.A.; Caughey, T.K.; Chassiakos, A.G.; Claus, R.O.; Masri, S.F.; Skelton, R.E.; Soong, T.T.; Spencer, B.F.; Yao, J.T.P.: Structural control: past, present, and future. J. Eng. Mech. 123, 897–971 (1997). https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)

    Article  Google Scholar 

  6. Symans, M.D.; Constantinou, M.C.: Semi-active control systems for seismic protection of structures: a state-of-the-art review. Eng. Struct. 21, 469–487 (1999). https://doi.org/10.1016/S0141-0296(97)00225-3

    Article  Google Scholar 

  7. Lin, C.C.; Lu, L.Y.; Lin, G.L.; Yang, T.W.: Vibration control of seismic structures using semi-active friction multiple tuned mass dampers. Eng. Struct. 32, 3404–3417 (2010). https://doi.org/10.1016/j.engstruct.2010.07.014

    Article  Google Scholar 

  8. Giaralis, A.; Petrini, F.: Wind-Induced Vibration Mitigation in tall buildings using the tuned mass-damper-inerter. J. Struct. Eng. (United States) 143, 1–11 (2017). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001863

    Article  Google Scholar 

  9. Demetriou, D.; Nikitas, N.; Tsavdaridis, K.D.: Semi active tuned mass dampers of buildings: a simple control option. Am. J. Eng. Appl. Sci. 8, 620–632 (2015). https://doi.org/10.3844/ajeassp.2015.620.632

    Article  Google Scholar 

  10. Karami, K.; Manie, S.; Ghafouri, K.; Nagarajaiah, S.: Nonlinear structural control using integrated DDA/ISMP and semi-active tuned mass damper. Eng. Struct. 181, 589–604 (2019). https://doi.org/10.1016/j.engstruct.2018.12.059

    Article  Google Scholar 

  11. Setareh, M.: Application of semi-active tuned mass dampers to base-excited systems. Earthq. Eng. Struct. Dyn. 30, 449–462 (2001). https://doi.org/10.1002/eqe.19

    Article  Google Scholar 

  12. Pinkaew, T.; Fujino, Y.: Effectiveness of semi-active tuned mass dampers under harmonic excitation. Eng. Struct. 23, 850–856 (2001). https://doi.org/10.1016/S0141-0296(00)00091-2

    Article  Google Scholar 

  13. Ali, S.F.; Ramaswamy, A.: Hybrid structural control using magnetorheological dampers for baseisolated structures. Smart Mater. Struct. 18, (2009). Doi: https://doi.org/10.1088/0964-1726/18/5/055011

  14. Zhao, B.; Wu, D.; Lu, Z.: Shaking table test and numerical simulation of the vibration control performance of a tuned mass damper on a transmission tower. Struct. Infrastruct. Eng. (2020). https://doi.org/10.1080/15732479.2020.1800755

    Article  Google Scholar 

  15. Liu, M.Y.; Chiang, W.L.; Hwang, J.H.; Chu, C.R.: Wind-induced vibration of high-rise building with tuned mass damper including soil-structure interaction. J. Wind Eng. Ind. Aerodyn. 96, 1092–1102 (2008). https://doi.org/10.1016/j.jweia.2007.06.034

    Article  Google Scholar 

  16. Ramezani, M.; Bathaei, A.; Zahrai, S.M.: Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings. Smart Struct. Syst. 20, 61–74 (2017). Doi: https://doi.org/10.12989/sss.2017.20.1.061

  17. Rezaee, M.; Aly, A.M.: Vibration control in wind turbines to achieve desired system-level performance under single and multiple hazard loadings, (2018)

  18. Yau, J.D.; Yang, Y.: Bin: A wideband MTMD system for reducing the dynamic response of continuous truss bridges to moving train loads. Eng. Struct. 26, 1795–1807 (2004). https://doi.org/10.1016/j.engstruct.2004.06.015

    Article  Google Scholar 

  19. Mohebbi, M.; Shakeri, K.; Ghanbarpour, Y.; Majzoub, H.: Designing optimal multiple tuned mass dampers using genetic algorithms (GAs) for mitigating the seismic response of structures. JVC/Journal Vib. Control. 19, 605–625 (2013). https://doi.org/10.1177/1077546311434520

    Article  Google Scholar 

  20. Shariatmadar, H.; Razavi, H.M.: Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method. Struct. Eng. Mech. 51, 547–564 (2014). Doi: https://doi.org/10.12989/sem.2014.51.4.547

  21. Zahrai, S.M.; Zare, A.; Khalili, M.K.; Asnafi, A.: Seismic design of fuzzy controller for semi-active tuned mass dampers using top stories as the mass. Asian J. Civ. Eng. 14, 383–396 (2013)

    Google Scholar 

  22. Lu, Z.; Chen, X.; Zhang, D.; Dai, K.: Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation. Earthq. Eng. Struct. Dyn. 46, 697–714 (2017). https://doi.org/10.1002/eqe.2826

    Article  Google Scholar 

  23. Brezas, P.; Smith, M.C.; Hoult, W.: A clipped-optimal control algorithm for semi-active vehicle suspensions: Theory and experimental evaluation. Automatica 53, 188–194 (2015). https://doi.org/10.1016/j.automatica.2014.12.026

    Article  MathSciNet  MATH  Google Scholar 

  24. Koo JH, Setareh M, M.T.: In search of suitable control methods for semi-active tuned vibration absorbers. J Vib Control. 10, 163–74 (2004)

  25. Viet, L.D.; Nghi, N.B.; Hieu, N.N.; Hung, D.T.; Linh, N.N.; Hung, L.X.: On a combination of ground-hook controllers for semi-active tuned mass dampers. J. Mech. Sci. Technol. 28, 2059–2064 (2014). https://doi.org/10.1007/s12206-014-0109-3

    Article  Google Scholar 

  26. Zhang, X.; Far, H.: Effects of dynamic soil - structure interaction on seismic behaviour of high - rise buildings. Bull. Earthq. Eng. (2021). https://doi.org/10.1007/s10518-021-01176-z

    Article  Google Scholar 

  27. Sotiriadis, D.; Klimis, N.; Margaris, B.; Sextos, A.: Influence of structure–foundation–soil interaction on ground motions recorded within buildings. Bull. Earthq. Eng. 17, 5867–5895 (2019). https://doi.org/10.1007/s10518-019-00700-6

    Article  Google Scholar 

  28. Gao, Z.; Zhao, M.; Du, X.; Zhao, X.: Seismic soil–structure interaction analysis of structure with shallow foundation using response spectrum method. Bull. Earthq. Eng. 18, 3517–3543 (2020). https://doi.org/10.1007/s10518-020-00827-x

    Article  Google Scholar 

  29. Mashhadi, S.; Asadi, A.; Homaei, F.; Tajammolian, H.: Seismic response of mid-rise steel MRFs: the role of geometrical irregularity, frequency components of near-fault records, and soil-structure interaction. Bull. Earthq. Eng. 19, 3571–3595 (2021). https://doi.org/10.1007/s10518-021-01103-2

    Article  Google Scholar 

  30. Ghorbanzadeh, M.; Uygar, E.; Sensoy, S.: Lateral soil pile structure interaction assessment for semi active tuned mass damper buildings. Structures. 29, 1362–1379 (2021). https://doi.org/10.1016/j.istruc.2020.12.020

    Article  Google Scholar 

  31. Wong, J.E.L.H.L.: Seismic response of foundations embedded in a layered half‐space. Earthq. Eng. Struct. Dyn., p.15 (1987)

  32. Wolf, J. ; Hall, William ; Hall, W.: No Title. Engelwood Cliffs, New Jersey, A Div. Simon Schuster. (1988)

  33. Lou M, W.J. and C.F.: Effect of soilstructure interaction on tmd control for wind and seismic response of structures,. In: Proceedings of ASCE Structure Congress. pp. 70–74, New Orleans, USA (1999)

  34. Feng, Z.R.; Su, L.; Wan, H.P.; Luo, Y.; Ling, X.Z.; Wang, X.H.: Three-dimensional finite element modelling for seismic response analysis of pile-supported bridges. Struct. Infrastruct. Eng. 15, 1583–1596 (2019). https://doi.org/10.1080/15732479.2019.1625932

    Article  Google Scholar 

  35. Lou, M.; Wang, W.: Study on soil-pile-structure-TMD interaction system by shaking table model test. Earthq. Eng. Eng. Vib. 3, 127–137 (2004). https://doi.org/10.1007/bf02668858

    Article  Google Scholar 

  36. Anand, V.; Satish Kumar, S.R.: Seismic Soil-structure Interaction: A State-of-the-Art Review. Structures. 16, 317–326 (2018). https://doi.org/10.1016/j.istruc.2018.10.009

    Article  Google Scholar 

  37. Farshidianfar, A.; Soheili, S.: Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction. Soil Dyn. Earthq. Eng. 51, 14–22 (2013). https://doi.org/10.1016/j.soildyn.2013.04.002

    Article  Google Scholar 

  38. Nigdeli, S.M.; Bekdaş, G.: Optimum tuned mass damper design in frequency domain for structures. KSCE J. Civ. Eng. 21, 912–922 (2017). https://doi.org/10.1007/s12205-016-0829-2

    Article  Google Scholar 

  39. Jabary, R.N.; Madabhushi, S.P.G.: Structure-soil-structure interaction effects on structures retrofitted with tuned mass dampers. Soil Dyn. Earthq. Eng. 100, 301–315 (2017). https://doi.org/10.1016/j.soildyn.2017.05.017

    Article  Google Scholar 

  40. Salvi, J.; Pioldi, F.; Rizzi, E.: Optimum Tuned Mass Dampers under seismic Soil-Structure Interaction. Soil Dyn. Earthq. Eng. 114, 576–597 (2018). https://doi.org/10.1016/j.soildyn.2018.07.014

    Article  Google Scholar 

  41. Dutta, S.C.; Bhattacharya, K.; Roy, R.: Response of low-rise buildings under seismic ground excitation incorporating soil-structure interaction. Soil Dyn. Earthq. Eng. 24, 893–914 (2004). https://doi.org/10.1016/j.soildyn.2004.07.001

    Article  Google Scholar 

  42. McKenna, F. and Fenves, G.: The OpenSees command language manual, http://opensees.berkeley.edu (2001)

  43. Provisions, S.: Seismic Provisions for Structural Steel Buildings (2015)

  44. Brock, J.E. (1946): A note on the damped vibration absorber. J.Appl. Mech.-ASCE. 13(4), A-284 (1946)

  45. Ioi, T.; Ikeda, K.: On the dynamic vibration damped absorber of the vibration system. Bull. JSME. 21(151), 64–71 (1978)

    Article  Google Scholar 

  46. Rahmani, A.; Taiebat, M.; Finn, W.D.L.; Ventura, C.E.: Evaluation of p–y springs for nonlinear static and seismic soil-pile interaction analysis under lateral loading. Soil Dyn. Earthq. Eng. 115, 438–447 (2018). https://doi.org/10.1016/j.soildyn.2018.07.049

    Article  Google Scholar 

  47. API, Recommended practice for planning, designing, and constructing fixed offshore platforms, American Petroleum Institute. Section 6.8 Soil Reaction for Laterally Loaded Piles (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ghorbanzadeh.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbanzadeh, M., Sensoy, S. & Uygar, E. Seismic Performance Assessment of Semi Active Tuned Mass Damper in an MRF Steel Building Including Nonlinear Soil–Pile–Structure Interaction. Arab J Sci Eng 48, 4675–4693 (2023). https://doi.org/10.1007/s13369-022-07138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07138-0

Keywords

Navigation