Skip to main content

Advertisement

Log in

Current Technologies and Future Trends for Biodiesel Production: A Review

  • Review Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Increasing use of rapidly developing technology in daily life, people's commitment to comfortable living and rising prosperity increases the need for energy day by day and makes energy essential for human beings. Today, the level of energy consumption has become an indicator of economic development and power for countries, and the sharing of existing energy resources has been one of the main factors that play a role in the formation of the world politics and conjuncture. The majority of the total energy consumption in the world consists of fossil fuels, which are burned in the internal combustion engines (ICE) in the transport sector. The disadvantages of fossil fuel use in ICEs lead researchers to work on new engine designs that will increase combustion efficiency and reduce harmful emission gas output, and to develop renewable and green fuels that can be used in these engines. Biodiesel is the most suitable alternative to petroleum diesel used as conventional fuel in compression ignition engines (diesel engines), which is the most widely used ICE in the transportation sector. In this review paper, a general view of the biodiesel production technologies is addressed to focus on the most valuable strategy, mainly, for ICEs in transportation industry sector. After reviewing a wide range of data, it has been observed that microwave assisted biodiesel production technology is not well-known in low-income countries and should be emphasized about its RandD technology in these countries. This technology has advantages to solve aforementioned problems. The main objective of this paper is to present and discuss the current and future technologies for biodiesel production. Biofuels, in general, are initially presented, then an emphasis is placed on the processes for obtaining biodiesel, on raw materials origins and characteristics and on biodiesel proprieties when used as fuel. Finally, biodiesel production methods from past to present are discussed. A special focus is given to microwave technology as an emerging solution for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASTM:

American society for testing and materials

BD:

Biodiesel

CO:

Carbon monoxide

CO2:

Carbon dioxide

DIN:

Deutsches institut für normung

EN:

European norm

EU:

European union

ICE:

Internal combustion engine

FAME:

Fatty acid methyl ester

FFA:

Free fatty acid

NF:

Nanofluid

NOx:

Nitrogen oxides

NP:

Nanoparticles

WBA:

World bioenergy association

References

  1. Janaun, J.; Ellis, N.: Perspectives on biodiesel as a sustainable fuel. Renew. Sust. Energ Rev. 14, 1312–1320 (2010)

    Article  Google Scholar 

  2. Aggarwal, H. D., Chowdhury, S. N., Mukerji, and Verman, L. C.: Indian vegetable oils as fuel for diesel engine, Bull. Indian Ind. Res., Council of Scientific and Industrial Research, New Delhi, India (1952)

  3. Goering, C., Schrock, M., Kaufman, K., Hanna, M., Harris, F., and Marley, S.: Evaluation of vegetable oil fuels in engines, ASAE Paper No. 87–1586 (1987)

  4. Nascimento, M.A.R.; Sierra, R.; Silva Lora, G.A.: Performance and emission experimental evaluation and comparison of a regenerative gas microturbine using biodiesel from various sources as fuel. J. Energy Resour. Technol. 133(2), 022204 (2011)

    Article  Google Scholar 

  5. Soudagar, M.E.M.; Khan, H.M.; Khan, T.M.Y.; Razzaq, L.; Asif, T.; Mujtaba, M.A.; Hussain, A.; Farooq, M.; Ahmed, W.; Shahapurkar, K.; Alwi, A.; Ibrahim, T.M.; Ishtiaq, U.; Elfasakhany, A.; Ali Baig, M.A.; Goodarzi, M.S.; Safaei, M.R.: Experimental analysis of engine performance and exhaust pollutant on a single-cylinder diesel engine operated using Moringa Oleifera biodiesel. Appl. Sci. 11, 7071 (2021). https://doi.org/10.3390/app11157071

    Article  Google Scholar 

  6. Giuffrè, A.M.; Tellah, S.; Capocasale, M.; Zappia, C.; Latati, M.; Badiani, M.; Ounane, S.M.: Seed oil from ten Algerian peanut landraces for edible use and biodiesel production. J. Oleo Sci. 65(1), 9–20 (2016). https://doi.org/10.5650/jos.ess15199

    Article  Google Scholar 

  7. Giuffrè, A.M.; Capocasale, M.; Zappia, C.; Sicari, V.; Pellicanò, T.M.; Poiana, M.; Panzera, G.: Tomato seed oil for biodiesel production. Eur. J. Lipid Sci. Technol. 118(4), 640–650 (2016). https://doi.org/10.1002/ejlt.201500002

    Article  Google Scholar 

  8. Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C.: Biodiesel production from high FFA rubber seed oil. Fuel 84, 335–340 (2005)

    Article  Google Scholar 

  9. Sadeghinezhad, E.; Kazi, S.N.; Sadeghinejad, F.; Badarudin, A.; Mehrali, M.; Sadri, R.; Safaei, M.R.: A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement. Renew. Sustain. Energy Rev. 30, 29–44 (2014). https://doi.org/10.1016/j.rser.2013.09.022

    Article  Google Scholar 

  10. De Araújo, C.D.M.; de Andrade, C.C.; Silva, E.D.S.; Dupas, F.A.: Biodiesel production from used cooking oil: a review. Renew. Sustain. Energy Rev. 27, 445–452 (2013)

    Article  Google Scholar 

  11. Karmakar, A.; Karmakar, S.; Mukherjee, S.: Properties of various plants and animals feedstocks for biodiesel production. Biores. Technol. 101, 7201–7210 (2010)

    Article  Google Scholar 

  12. Motasemi, F.; Ani, F.N.: A review on microwave-assisted production of biodiesel. Renew. Sustain. Energy Rev. 16(7), 4719–4733 (2012). https://doi.org/10.1016/j.rser.2012.03.069

    Article  Google Scholar 

  13. Nomanbhay, S.; Ong, M.Y.: A review of microwave-assisted reactions for biodiesel production. Bioengineering 4(2), 57 (2017). https://doi.org/10.3390/bioengineering4020057

    Article  Google Scholar 

  14. Wilson A.B. and Dobreva A.: (2015) Energy supply and security, European Parliamentary Research Service, 2019, PE 630.275

  15. World Bioenergy Association, Global Bioenergy Statistics 2018, www.worldbioenergy.org

  16. Thangavelu, S.K.; Ahmed, A.S.; Ani, F.N.: Review on bioethanol as alternative fuel for spark ignition engines. Renew. Sustain. Energy Rev. 56, 820–835 (2015). https://doi.org/10.1016/j.rser.2015.11.089

    Article  Google Scholar 

  17. Atelge, M.R.; Senol, H.; Djaafri, M.; Hansu, T.A.; Krisa, D.; Atabani, A.; Eskicioglu, C.; Muratçobanoglu, H.; Unalan, S.; Kalloum, S., et al.: A critical overview of the state-of-the-art methods for biogas purification and utilization processes. Sustainability 13, 11515 (2021). https://doi.org/10.3390/su132011515

    Article  Google Scholar 

  18. Chincholkar, S.P.; Srivastava, S.; Rehman, A.; Dixit, S.; Lanjewar, A.: Biodiesel as an alternative fuel for pollution control in diesel engine. Asian J. Exp. Sci. 19(2), 13–22 (2005)

    Google Scholar 

  19. Guo, S.; Yang, Z.; Gao, Y.: Effect of adding biodiesel to diesel on the physical and chemical properties and engine performance of fuel blends. J. Biobased Mater. Bioenergy 10, 34–43 (2016). https://doi.org/10.1166/jbmb.2016.1566

    Article  Google Scholar 

  20. Bhattacharyya, S.; Reddy, C.S.: Vegetable oils as fuels for internal combustion engines. J. Agric. Eng. Res. 57, 157–166 (1994)

    Article  Google Scholar 

  21. Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport.

  22. Wijesekara, R.G.; Nomura, N.; Sato, S.; Matsumura, M.: Pre-treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1, 3-propanediol production by Clostridium butyricum. J. Chem. Technol. Biotechnol. 83(7), 1072–1080 (2008)

    Article  Google Scholar 

  23. Vignesh, G.; Barik, D.: Chapter 6 - toxic waste from biodiesel production industries and its utilization. In: Debabrata, B. (Ed.) Woodhead publishing series in energy, energy from toxic organic waste for heat and power generation. Woodhead Publishing (2019)

    Google Scholar 

  24. Ma, F.; Hanna, M.A.: Biodiesel production: a review. Bioresour. Technol. 70, 1–15 (1999)

    Article  Google Scholar 

  25. Mahanta. P., Shrivastava, A.: (2004), Technology development of biodiesel as an energy alternative. Available from: http://newagepublishers.com/samplechapter/001305.pdf

  26. Gebremariam, S.N.; Marchetti, J.M.: Biodiesel production technologies: review. AIMS Energy 5(3), 425–457 (2017). https://doi.org/10.3934/energy.2017.3.425

    Article  Google Scholar 

  27. Salaheldeen, M.; Mariod, A.A.; Aroua, M.K.; Rahman, S.M.A.; Soudagar, M.E.M.; Fattah, I.M.R.: Current state and perspectives on transesterification of triglycerides for biodiesel production. Catalysts 11, 1121 (2021). https://doi.org/10.3390/catal11091121

    Article  Google Scholar 

  28. Jaichandar, S.; Annamalai, K.: The Status of biodiesel as an alternative fuel for diesel engine – an overview. J. Sustain. Energy Environ. 2, 71–75 (2011)

    Google Scholar 

  29. Giuffrè, A.M.; Capocasale, M.; Zappia, C.; Poiana, M.: Biodiesel from tomato seed oil: transesterification and characterisation of chemical-physical properties. Agron. Res. 15(1), 133–143 (2017)

    Google Scholar 

  30. Cheng, Z.Z.; Lin, S.S.; Lei, R.; Yan, X.C.; Nie, Y.J.: Synthesis of biodisiel from used cooking oils catalyzed by solid acid. Adv. Mater. Res. 236–238, 496–500 (2011). https://doi.org/10.4028/www.scientific.net/AMR.236-238.496

    Article  Google Scholar 

  31. Lam, M.K.; Jamalluddin, N.A.; Lee, K.T.: Chapter 23 - production of biodiesel using palm oil. In: Ashok, P.; Christian, L.; Claude-Gilles, D.; Edgard, G.; Samir, K.K.; Steven, R. (Eds.) In biomass, biofuels, biochemicals, biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels, 2nd edn. Academic Press (2019)

    Google Scholar 

  32. Banković-Ilić, I.B.; Stamenković, O.S.; Veljković, V.B.: Biodiesel production from nonedible plant oils. Renew. Sustain. Energy Rev 16(6), 3621–3647 (2012)

    Article  Google Scholar 

  33. Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J.: Fatty Acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 16(6), 12871–12890 (2015). https://doi.org/10.3390/ijms160612871

    Article  Google Scholar 

  34. Giakoumis, E.G.: Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation. Renew. Energy 126, 403–419 (2018). https://doi.org/10.1016/j.renene.2018.03.057

    Article  Google Scholar 

  35. Statista., 2022. "Worldwide oilseed production by type, 2020/2021 Statista", https://www.statista.com/statistics/267271/worldwide-oilseed-production-since-2008/, accessed on February 01, 2022

  36. USDA, Economic Research Service, 2021, “Oil Crops Sector at a Glance”, https://www.ers.usda.gov/topics/crops/soybeans-oil-crops/oil-crops-sector-at-a-glance/, accessed on February 01, 2022

  37. OCDE/FAO, 2021, OECD-FAO Agricultural Outlook 2021–2030, in OCDE (eds.), Paris, https://doi.org/10.1787/19428846-en

  38. Matthaus, B.; Özcan, M.M.; Al Juhaimi, F.: Some rape/canola seed oils: fatty acid composition and tocopherols Z Naturforsch C. J. Biosci. 71(3–4), 73–77 (2016). https://doi.org/10.1515/znc-2016-0003 (PMID: 27023318)

    Article  Google Scholar 

  39. Hazrat, M.A.; Rasul, M.G.; Mofijur, M.; Khan, M.M.K.; Djavanroodi, F.; Azad, A.K.; Bhuiya, M.M.K.; Silitonga, A.S.: A Mini review on the cold flow properties of biodiesel and its blends. Front. Energy Res. 8, 598651 (2020). https://doi.org/10.3389/fenrg.2020.598651

    Article  Google Scholar 

  40. Farm Energy 2019, “Rapeseed and Canola for Biodiesel Production”. https://farm-energy.extension.org/rapeseed-and-canola-for-biodiesel-production/. Accessed on February 01, 2022

  41. Yoon, H.Y.; Park, S.H.; Suh, H.K.; Lee, C.S.: Effect of biodiesel-ethanol blended fuel spray characteristics on the reduction of exhaust emissions in a common-rail diesel engine,. J. Energy Resour. Technol., 132, 042201–042207 (2010)

    Article  Google Scholar 

  42. Cardone, M., Prati, M.V., Rocco, V., and Senatore, A.: 1998, Experimental analysis of performances and emissions of a diesel engine fuelled with biodiesel and diesel oil Blends, Proc. MIS–MAC V, Roma, pp. 211–225

  43. De Vita, A., Alaggio, M., and Cavaliere, M.: (1999) Direct Injection Diesel Engines Fuelled with Diesel and Diesel Oil blends: Performances and Emissions, Proc. 54v ATI Congress, L’Aquila, Italy, pp. 547–556

  44. Laforgia, D.; Ardito, V.: Biodiesel fuelled IDI engines: performances, emissions and heat release investigation. Biores. Technol. 51, 53–59 (1995)

    Article  Google Scholar 

  45. Singh, B.; Kaur, J.; Singh, K.: Production of biodiesel from used mustard oil and its performance analysis in internal combustion engine,. J. Energy Resour. Technol. 132, 031001–031004 (2010)

    Article  Google Scholar 

  46. Schumacher, L.G.; Hires, W.G.; Borgelt, S.C.: Fuelling diesel engines with methyl-ester soybean oil, liquid fuels from renewable resources. Proc. Altern. Energ. Conf. 25, 52 (1992)

    Google Scholar 

  47. Love, N.D.; Parthasarathy, R.N.; Gollahalli, S.R.: Rapid characterization of radiation and pollutant emissions of biodiesel and hydrocarbon liquid fuels,. J. Energy Resour. Technol. 131, 012202–012209 (2009)

    Article  Google Scholar 

  48. Carrarotto, C., et al.: Biodiesel as alternative fuel: experimental analysis and energetic evaluations. Energy 29, 2195–2211 (2004)

    Article  Google Scholar 

  49. Moreno, F.; Munoz, M.; Morea-Roy, J.: Sunflower methyl ester as a fuel for automobile diesel engines,. Trans. ASABE 42, 1181–1186 (1999)

    Article  Google Scholar 

  50. Che, M.S.; Idroas, M.Y.; Hamid, M.F.; Zainal, Z.A.: Performance and emissions of straight vegetable oils and its blends as a fuel in diesel engine: a review. Renew. Sustain. Energy Rev. 82, 808–823 (2018). https://doi.org/10.1016/J.RSER.2017.09.080

    Article  Google Scholar 

  51. Monirul, I.M.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Rashedul, H.K.; Rashed, M.M.; Imdadul, H.K.; Mosarof, M.H.: A comprehensive review on biodiesel cold flow properties and oxidation stability along with their improvement processes. R. Soc. Chem. 5(105), 86631–86655 (2005). https://doi.org/10.1039/C5RA09555G

    Article  Google Scholar 

  52. Atabani, A.E.; Silitonga, A.S.; Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Badruddin, I.A.; Fayaz, H.: Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sustain. Energy Rev. 18, 211–245 (2013)

    Article  Google Scholar 

  53. Bamgboye, A.I.; Hansen, A.C.: Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. Int. Agrophys. 22, 21–29 (2008)

    Google Scholar 

  54. Bezaire, N.; Wadumesthrige, K.; Simon Ng, K.Y.; Salley, S.O.: Limitations of the use of cetane index for alternative compression ignition engine fuels. Fuel 89, 3807–3813 (2010)

    Article  Google Scholar 

  55. Ramírez-Verduzco, L.F.; Rodríguez-Rodríguez, J.E.; del Rayo, A.; Jacob, J.: Predicting cetane number, kinematic viscosity, density, and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91, 102–111 (2012)

    Article  Google Scholar 

  56. Fu, J.: Flash points measurements and prediction of biofuels and biofuel blends with aromatic fluids. Fuel 241, 892–900 (2018). https://doi.org/10.1016/j.fuel.2018.12.105

    Article  Google Scholar 

  57. Hoekman, S.; Robbins, C.: Review of the effects of biodiesel on NOx emissions. Fuel Process. Technol. 96, 237–249 (2012). https://doi.org/10.1016/j.fuproc.2011.12.036

    Article  Google Scholar 

  58. DIN EN 14214. 2019. Liquid petroleum products-Fatty acid methyl esters (FAME) for use in diesel engines and heating applications-Requirements and test methods. European Standards

  59. ASTM D6751-20a. (2020) Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. American Society for Testing and Materials. DOI: https://doi.org/10.1520/D6751-20A

  60. Jääskeläinen, H.E.: (2011) Biodiesel Standards and Properties, In: DieselNet technology guide. https://dieselnet.com/tech/fuel_biodiesel_std.php

  61. Song, H.; Quinton, K.S.; Peng, Z.; Zhao, H.; Ladommatos, N.: Effects of oxygen content of fuels on combustion and emissions of diesel engines. Energies 9, 28 (2016). https://doi.org/10.3390/en9010028

    Article  Google Scholar 

  62. Kathirvelu, B.; Subramanian, S.; Govindan, N.; Santhanam, S.: Emission characteristics of biodiesel obtained from jatropha seeds and fish wastes in a diesel engine. Sustain. Environ. Res. 27(6), 283–290 (2017). https://doi.org/10.1016/j.serj.2017.06.004

    Article  Google Scholar 

  63. Bui, T.T.; Balasubramanian, D.; Hoang, A.T.; Konur, O.; Nguyen, D.C.; Tran, V.N.: Characteristics of PM and soot emissions of internal combustion engines running on biomass-derived DMF biofuel: a review. Energy Sour., Part A: Recov., Utilization, Environ. Effects (2020). https://doi.org/10.1080/15567036.2020.1869868

    Article  Google Scholar 

  64. Xue, J.; Grift, T.; Hansen, A.: Effect of biodiesel on engine performances and emissions. Renew. Sustain. Energy Rev. 15, 1098–1116 (2011). https://doi.org/10.1016/j.rser.2010.11.016

    Article  Google Scholar 

  65. Boubahri, C. (2013) Etudes des performances d'un moteur à explosion interne fonctionnant en mélange de carburant, PhD thesis, National School of Engineers of Tunis

  66. Boubahri, C.; Ennetta, R.; Said, R.; Bessrour, J.: Experimental study of a diesel engine performance running on waste vegetable oil biodiesel blend, ASME. J. Energy Resour. Technol. 134, 032202 (2012)

    Article  Google Scholar 

  67. Amara, A. B., Lecointe, B., Jeuland, N., Takahashi, T., IIda, Y., Hashimoto, H. and Bouilly, J.: (2014) Experimental Study of the Impact of Diesel/Biodiesel Blends Oxidation on the Fuel Injection System. SAE International Journal of Fuels and Lubricants, 7(3), 849–860. http://www.jstor.org/stable/26273724

  68. Hoang, A.T.; Tabatabaei, M.; Aghbashlo, M.: A review of the effect of biodiesel on the corrosion behavior of metals/alloys in diesel engines. Energy Sour, Part A: Recov., Utilization, Environ. Effects 42(23), 2923–2943 (2020). https://doi.org/10.1080/15567036.2019.1623346

    Article  Google Scholar 

  69. Alves, S.M.; KaicDutra-Pereira, F.: Biodiesel compatibility with elastomers and steel. In: Jacob-Lopes, E.; Zepka, L.Q. (Eds.) Frontiers in bioenergy and biofuels. IntechOpen (2017)

    Google Scholar 

  70. Palani, Y.; Devarajan, C.; Manickam, D.; Thanikodi, S.: Performance and emission characteristics of biodiesel-blend in diesel engine: a review. Environ. Eng. Res. 27(1), 200338 (2022). https://doi.org/10.4491/eer.2020.338

    Article  Google Scholar 

  71. Murillo, S.; Miguez, J.L.; Porteiro, J.; Granada, E.; Moran, J.C.: Performance and exhaust emissions in use of biodiesel in outboard diesel engines. Fuel 86, 1765–1771 (2007)

    Article  Google Scholar 

  72. Allen Jeffrey, J.: Effectiveness of palm oil biodiesel on performance and emission characteristics in a compression Ignition engine. Int. J. Sci. Eng. Technol. Res. 6, 546–550 (2017)

    Google Scholar 

  73. Sateesh, K.A.; Yaliwal, V.S.; Soudagar, M.E.M., et al.: Utilization of biodiesel/Al2O3 nanoparticles for combustion behavior enhancement of a diesel engine operated on dual fuel mode. J Therm Anal Calorim 147, 5897–5911 (2022). https://doi.org/10.1007/s10973-021-10928-7

    Article  Google Scholar 

  74. Gavhane, S.R.; Kate, M.A.; Pawar, A.; Safaei, M.R.; Soudagar, M.E.; Mujtaba Abbas, M.; Muhammad Ali, H.; Banapurmath, R.; Goodarzi, N.; Badruddin, I.A.; Ahmed, W.; Shahapurkar, K.: Effect of zinc oxide nano-additives and soybean biodiesel at varying loads and compression ratios on VCR diesel engine characteristics. Symmetry 12, 1042 (2020). https://doi.org/10.3390/sym12061042

    Article  Google Scholar 

  75. Soudagar, M.E.M.; Mujtaba, M.; Safaei, M.R.; Afzal, A.; Raju, V.D.; Ahmed, W.; Banapurmath, N.R.; Houssain, N.; Bashir, S.; Badruddine, I.A.; Goodarzi, M.; Shahapurkar, K.; Taqui, S.N.: Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics. Energy (2020). https://doi.org/10.1016/j.energy.2020.119094

    Article  Google Scholar 

  76. Soudagar, M.E.M.; Afzal, A.; Safaei, M.R., et al.: Investigation on the effect of cottonseed oil blended with different percentages of octanol and suspended MWCNT nanoparticles on diesel engine characteristics. J. Therm. Anal. Calorim. 147, 525–542 (2022). https://doi.org/10.1007/s10973-020-10293-x

    Article  Google Scholar 

  77. Dias, J.M.; Alvim-Ferraz, M.C.M.; Almeida, M.F.: Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel 87(17–18), 3572–3578 (2008). https://doi.org/10.1016/j.fuel.2008.06.014

    Article  Google Scholar 

  78. Fedai, O.: (2006) Transesterifikasyon ile Kanola Yağı Metil Esteri Sentezinin Optimizasyonu Y.Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Turkey

  79. Vicente, G.; Martı́nez, M.; Aracil, J.: Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour. Technol. 92(3), 297–305 (2004). https://doi.org/10.1016/j.biortech.2003.08.014

    Article  Google Scholar 

  80. Çildir, O.; Çanakci, M.: An investigation of the effects of catalyst and alcohol amounts on the fuel properties of biodiesel from various vegetable oils Çeşi̇tli̇ bi̇tki̇sel yaǧlardan bi̇yodi̇zel üreti̇mi̇nde katali̇zör ve alkol mi̇ktarinin yakit özelli̇kleri̇ üzeri̇ne etki̇si̇ni̇n i̇ncelenmesi̇. J. Faculty Eng. Arch. Gazi Univ. 21, 367–372 (2006)

    Google Scholar 

  81. Azcan, N.; Danisman, A.: Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel 86, 2639–2644 (2007)

    Article  Google Scholar 

  82. Sabudak, T.; Yildiz, M.: Biodiesel production from waste frying oils and its quality control. Waste Manage. 30, 799–803 (2010). https://doi.org/10.1016/j.wasman.2010.01.007

    Article  Google Scholar 

  83. Meher, L.C.; Dharmagadda, V.S.S.; Naik, S.N.: Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Biores. Technol. 97(12), 1392–1397 (2006). https://doi.org/10.1016/j.biortech.2005.07.003

    Article  Google Scholar 

  84. Özsezen A.N. : (2007) Atık palmiye yağından üretilen biyodizelin motor performans ve emisyon karakterleri üzerine etkisinin incelenmesi, (Doktora Tezi), Kocaeli Üniversitesi Makine Eğitimi ABD, Kocaeli

  85. Bouaid, A.; Martínez, M.; Aracil, J.: Production of biodiesel from bioethanol and Brassica carinata oil: oxidation stability study. Biores. Technol. 100, 2234–2239 (2009). https://doi.org/10.1016/j.biortech.2008.10.045

    Article  Google Scholar 

  86. Alptekin, E.; Canakci, M.; Sanli, H.: Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manage. 34(11), 2146–2154 (2014). https://doi.org/10.1016/j.wasman.2014.07.019

    Article  Google Scholar 

  87. Abdul-Majeed, W.S.; AAl-Thani, G.S.; Al-Sabahi, J.N.: Application of flying jet plasma for production of biodiesel fuel from wasted vegetable oil. Plasma Chem. Plasma Process 36, 1517–1531 (2016). https://doi.org/10.1007/s11090-016-9735-0

    Article  Google Scholar 

  88. Muley, P.D.; Wang, Y.; Hu, J.; Shekhawat, D.: Microwave-assisted heterogeneous catalysis. In: Spivey, J.; Han, Y.-F.S.; Dushyant, S. (Eds.) Catalysis: Volume 33. Royal Society of Chemistry (2021)

    Google Scholar 

  89. Khan, H.M.; Iqbal, T.; Mujtaba, M.A.; Soudagar, M.E.M.; Veza, I.; Fattah, I.M.R.: Microwave assisted biodiesel production using heterogeneous catalysts. Energies 14, 8135 (2021). https://doi.org/10.3390/en14238135

    Article  Google Scholar 

  90. Palm, M.O.; de Freitas, A.; Barbosa, S.L.; Gonçalves, M.W.; Duarte, D.A.; de Camargo Catapan, R.; de Carvalho Pinto, C.R.S.: Plasma-assisted catalytic route for transesterification reactions at room temperature. Fuel 307, 121740 (2022). https://doi.org/10.1016/j.fuel.2021.121740

    Article  Google Scholar 

  91. Li, J.; Ma, C.; Zhu, S.; Yu, F.; Dai, B.; Yang, D.: A review of recent advances of dielectric barrier discharge plasma in catalysis. Nanomaterials 9(10), 1428 (2019)

    Article  Google Scholar 

  92. Lu, X.; Laroussi, M.; Puech, V.: On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sour. Sci. Technol. 21, 777–788 (2012)

    Article  Google Scholar 

  93. Hyun, Y.-J.; Mok, Y.-S.; Jang, D.-I.: Transesterification of vegetable oils in pulsed-corona plasma discharge process. J. Korean Oil Chem. Soc. 29(1), 81–88 (2012)

    Google Scholar 

  94. Cubas, A.L.V., et al.: Biodiesel production using fatty acids from food industry waste using corona discharge plasma technology. Waste Manage 47, 149–154 (2016). https://doi.org/10.1016/j.wasman.2015.05.040

    Article  Google Scholar 

  95. Oliveira, P.A.; Baesso, R.M.; Moraes, G.C.; Alvarenga, A.; Costa-Félix, R.P.: Ultrasound methods for biodiesel production and analysis biofuels - state of development. IntechOpen (2018)

    Google Scholar 

  96. Costa-Felix, R.P.B.; Ferreira, J.R.L.: Comparing ultrasound and mechanical steering in a biodiesel production process. Phys. Procedia 70, 1066–1069 (2015). https://doi.org/10.1016/j.phpro.2015.08.227

    Article  Google Scholar 

  97. Shinde, K.; Kaliaguine, S.: A comparative study of ultrasound biodiesel production using different homogeneous catalysts. ChemEngineering. 3(1), 18 (2019). https://doi.org/10.3390/chemengineering3010018

    Article  Google Scholar 

  98. Stavarache, C.; Vinatoru, M.; Maeda, Y.: Aspects of ultrasonically assisted transesterification of various vegetable oils with methanol. Ultrason Sonochem. 14(3), 380–386 (2007). https://doi.org/10.1016/j.ultsonch.2006.08.004

    Article  Google Scholar 

  99. Shinde, K.; Nohair, B.; Kaliaguine, S.: A parametric study of biodiesel production under ultrasounds. Int. J. Chem. React. Eng. 15, 117–125 (2017)

    Google Scholar 

  100. Oliveira, P.A.; Baesso, R.M.; Morais, G.C.; Alvarenga, A.V.; Costa-Félix, R.P.B.: Ultrasound-assisted transesterification of soybean oil using low power and high frequency and no external heating source. Ultrasonics Sonochem. 78, 105709 (2021). https://doi.org/10.1016/j.ultsonch.2021.105709

    Article  Google Scholar 

  101. Mohamad Aziz, N.A.; Yunus, R.; Kania, D.; Abd Hamid, H.: Prospects and challenges of microwave-combined technology for biodiesel and biolubricant production through a transesterification: a review. Molecules 26, 788 (2021)

    Article  Google Scholar 

  102. Nayak, S.N.; Bhasin, C.P.; Nayak, M.G.: A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems. Renew. Energy 143, 1366–1387 (2019)

    Article  Google Scholar 

  103. Soltani, S.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H.: Synthesis of biodiesel through catalytic transesterification of various feedstocks using fast solvothermal technology: a critical review. Catal. Rev. 57(4), 407–435 (2015). https://doi.org/10.1080/01614940.2015.1066640

    Article  Google Scholar 

  104. Li, H.; Zhang, C.; Pang, C.; Li, X.; Gao, X.: The advances in the special microwave effects of the heterogeneous catalytic reactions. Front. Chem. 8, 355 (2020). https://doi.org/10.3389/fchem.2020.00355

    Article  Google Scholar 

  105. Khedri, B.; Mostafaei, M.; Safieddin Ardebili, S.M.: A review on microwave-assisted biodiesel production. Energy Sourc., Part A: Recov., Utilization, Environ. Effects (2018). https://doi.org/10.1080/15567036.2018.1563246

    Article  Google Scholar 

  106. Baghurst, D.R.; Mingos, D.M.P.: Superheating effects associated with microwave dielectric heating. J. Chem. Soc. Chem. Commun. 20, 674–677 (1992). https://doi.org/10.1039/c39920000674

    Article  Google Scholar 

  107. Berlan, J.; Giboreau, P.; Lefeuvre, S.; Marchand, C.: Synthèse organique sous champ microondes : premier exemple d’activation spécifique en phase homogène. Tetrahedron Lett. 32, 2363–2366 (1991). https://doi.org/10.1016/S0040-4039(00)79924-2

    Article  Google Scholar 

  108. de la Hoz, A.; Diaz-Ortiz, A.; Moreno, A.: Microwaves in organic synthesis. thermal and non-thermal microwave effects. Chem. Soc. Rev. 3, 164 (2005)

    Article  Google Scholar 

  109. Azcan, N.; Danisman, A.: Microwave assisted transesterification of rapeseed oil. Fuel 87(10–11), 1781–1788 (2008). https://doi.org/10.1016/j.fuel.2007.12.004

    Article  Google Scholar 

  110. Duz, M.Z.; Saydut, A.; Ozturk, G.: Alkali catalyzed transesterification of safflower seed oil assisted by microwave irradiation. Fuel Process. Technol. 92, 308–313 (2011). https://doi.org/10.1016/j.fuproc.2010.09.020

    Article  Google Scholar 

  111. Sherbiny, S.A.; Refaat, A.A.; Sheltawy, S.T.: Production of biodiesel using the microwave technique. J. Adv. Res. 1, 309–314 (2010)

    Article  Google Scholar 

  112. Kumar, R.; Ravi, K.G.; Chandrashekar, N.: Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production. Bioresour. Technol. 102, 6617–6620 (2011). https://doi.org/10.1016/j.biortech.2011.03.024

    Article  Google Scholar 

  113. Encinar, J.M.; González, J.F.; Martínez, G.; Sánchez, N.; Pardal, A.: Soybean oil transesterification by the use of a microwave flow system. Fuel 95, 386–393 (2012). https://doi.org/10.1016/j.fuel.2011.11.010

    Article  Google Scholar 

  114. Venkatesh, K.H.; Regupathi, I.; Saidutta, M.B.: Optimization of two step karanja biodiesel synthesis under microwave irradiation. Fuel Process. Technol. 92, 100–105 (2011). https://doi.org/10.1016/j.fuproc.2010.09.003

    Article  Google Scholar 

  115. Chen, H.-Y.; Cui, Z.-W.: A microwave-sensitive solid acid catalyst prepared from sweet potato via a simple method. Catalysts 6, 211 (2016). https://doi.org/10.3390/catal6120211

    Article  Google Scholar 

  116. Hernando, J.; Leton, P.; Matia, M.P.; Novella, J.L.; Alvarez, Builla J.: Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes. Fuel 86, 1641–1644 (2007)

    Article  Google Scholar 

  117. Boldor D., Kanitkar A., Muley P., Balasubramanian S., Lima M., Sabliov C.M.: (2010) Microwave-assisted Transesterification of Soybean and Rice Bran Oil to Biodiesel, Pittsburgh, Pennsylvania, June 20 - June 23, ASABE Paper No. 1009067. doi:https://doi.org/10.13031/2013.29799

  118. Mostafaei, M.; Ghobadian, B.; Barzegar, M.; Banakar, A.: Optimization of ultrasonic assisted continuous production of biodiesel using response surface methodology. Ultrason. Sonochem. 27, 54–61 (2015). https://doi.org/10.1016/j.ultsonch.2015.04.036

    Article  Google Scholar 

  119. Pandit, P.R.; Fulekar, M.H.: Egg shell waste as heterogeneous nanocatalyst for biodiesel production: optimized by response surface methodology. J. Environ. Manage. 198, 319–329 (2017). https://doi.org/10.1016/j.jenvman.2017.04.100

    Article  Google Scholar 

  120. Sabzimaleki, M.; Ghobadian, B.; Farsibaf, M.M.; Najafi, G.; Soufi, M.D.; Ardebili, S.M.S.: Optimization of biodiesel ultrasound-assisted synthesis from castor oil using response surface methodology (RSM). Chem. Prod. Process. Model. 10(2), 123–133 (2015). https://doi.org/10.1515/cppm-2014-0013

    Article  Google Scholar 

  121. Gole, V.L.; Gogate, P.R.: Intensification of synthesis of biodiesel from non-edible oil using sequential combination of microwave and ultrasound. Fuel Process. Technol. 106, 62–69 (2013). https://doi.org/10.1016/j.fuproc.2012.06.021

    Article  Google Scholar 

  122. Martinez-Guerra, E.; Gude, V.G.: Synergistic effect of simultaneous microwave and ultrasound irradiations on transesterification of waste vegetable oil. Fuel 137, 100–108 (2014). https://doi.org/10.1016/j.fuel.2014.07.087

    Article  Google Scholar 

  123. Chipurici, P.; Vlaicu, A.; Calinescu, I.; Vinatoru, M.; Vasilescu, M.; Ignat, N.D.; Mason, T.J.: Ultrasonic, hydrodynamic and microwave biodiesel synthesis – a comparative study for continuous process. Ultrason. Sonochem. 57, 38–47 (2019). https://doi.org/10.1016/j.ultsonch.2019.05.011

    Article  Google Scholar 

  124. Deshpande, S.R.; Sunol, A.K.; Philippidis, G.: Status and prospects of supercritical alcohol transesterification for biodiesel production. Wiley Interdiscipl. Rev.: Energy Environ. 6(5), e252 (2017). https://doi.org/10.1002/wene.252

    Article  Google Scholar 

  125. Saka, S.; Kusdiana, D.: Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80, 225 (2001)

    Article  Google Scholar 

  126. Madras, G.; Kolluru, C.; Kumar, R.: Synthesis of biodiesel in supercritical fluids. Fuel 83, 2029–2033 (2004)

    Article  Google Scholar 

  127. Hawash, S.; Kamal, N.; Zaher, F.; Kenawi, O.; Diwani, E.: Biodiesel fuel from jatropha oil via noncatalytic supercritical methanol. Fuel 88, 579–582 (2009)

    Article  Google Scholar 

  128. Demirbas, A.: Biodiesel from waste cooking oil via base-catalyzed and supercritical methanol transesterification. Energy Convers. Manage 50, 923–927 (2009)

    Article  Google Scholar 

  129. Micic, R.D.; Tomic, M.D.; Kiss, F.E.; Nikolic-Djoric, E.B.; Simikic, M.D.: Influence of reaction conditions and type of alcohol on biodiesel yields and process economics of supercritical transesterification. Energy Convers. Manage 86, 717–726 (2014)

    Article  Google Scholar 

  130. Singh, C.S.; Kumar, N.; Gautam, R.: Supercritical transesterification route for biodiesel production: effect of parameters on yield and future perspectives. Environ Prog. Sustain. Energy. 40(6), e13685 (2021). https://doi.org/10.1002/ep.13685

    Article  Google Scholar 

  131. Patil, P.D.; Reddy, H.; Muppaneni, T.; Ponnusamy, S.; Cooke, P.; Schuab, T.; Deng, S.: Microwave-mediated non-catalytic transesterification of algal biomass under supercritical ethanol conditions. J Supercrit Fluids. 79, 67–72 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Ennetta.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ennetta, R., Soyhan, H.S., Koyunoğlu, C. et al. Current Technologies and Future Trends for Biodiesel Production: A Review. Arab J Sci Eng 47, 15133–15151 (2022). https://doi.org/10.1007/s13369-022-07121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07121-9

Keywords

Navigation