Skip to main content
Log in

Shifted Legendre Collocation Analysis of Time-Dependent Casson Fluids and Carreau Fluids Conveying Tiny Particles and Gyrotactic Microorganisms: Dynamics on Static and Moving Surfaces

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

With an emphasis on the dynamics of (a) time-dependent fluids exhibiting plastic dynamic viscosity, (b) time-dependent fluids exhibiting limiting viscosities at zero, and at infinite shear rate such that each transport phenomenon conveys tiny particles and gyrotactic microorganisms, there is little or no method of solution for further analyses of the transport phenomenon when the migration of the tiny particles due to temperature gradient and its haphazard movement is strongly influenced by the fluid's concentration. Shifted Legendre Collocation method was developed and used to obtain the solution of the coupled, nonlinear, and dimensionless form of the dimensional Partial Differential Equation that models the transport phenomenon mentioned above, starting with the closed-form of Legendre polynomials (LPs) and considering shifted LPs that are orthogonal over the interval [− 1,1] with weighting function equivalent to unity. Based on the analysis of the given data, it is reasonable to conclude that Casson fluid has high values for local skin friction coefficient in the static wedge situation. In the Carreau fluid for moving wedge scenario, maximum values for local Nusselt number, local Sherwood number, and local density of motile microbe number are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bhatti, M.M.; Marin, M.; Zeeshan, A.; Ellahi, R.; Abdelsalam, S.I.: Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. Front. Phys. 8, 95 (2020)

    Article  Google Scholar 

  2. Waqas, H.; Khan, S.U.; Imran, M.; Bhatti, M.M.: Thermally developed Falkner-Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: Buongiorno’s nanofluid model. Phys. Scr. 94(11), 115304 (2019)

    Article  Google Scholar 

  3. Rehman, K.U.; Malik, A.A.; Tahir, M.; Malik, M.Y.: Undersized description on motile gyrotactic microorganisms individualities in MHD stratified water-based Newtonian nanofluid. Results Phys. 8, 981–987 (2018)

    Article  Google Scholar 

  4. De, P.: Impact of dual solutions on nanofluid containing motile gyrotactic microorganisms with thermal radiation. BioNanoScience 9(1), 13–20 (2019)

    Article  Google Scholar 

  5. Elanchezhian, E.; Nirmalkumar, R.; Balamurugan, M.; Mohana, K.; Prabu, K.M.; Viloria, A.: Heat and mass transmission of an Oldroyd-B nanofluid flow through a stratified medium with swimming of motile gyrotactic microorganisms and nanoparticles. J. Therm. Anal. Calorim. 141, 2613–2623 (2020)

    Article  Google Scholar 

  6. Naz, R.; Noor, M.; Hayat, T.; Javed, M.; Alsaedi, A.: Dynamism of magnetohydrodynamic cross nanofluid with particulars of entropy generation and gyrotactic motile microorganisms. Int. Commun. Heat Mass Transfer 110, 104431 (2020)

    Article  Google Scholar 

  7. Khan, W.A.; Rashad, A.M.; Abdou, M.M.M.; Tlili, I.: Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone. Eur. J. Mech. B Fluids 75, 133–142 (2019)

    Article  MathSciNet  Google Scholar 

  8. Ansari, M.S.; Otegbeye, O.; Trivedi, M.; Goqo, S.P.: Magnetohydrodynamic bio-convective Casson nanofluid flow: a numerical simulation by paired quasilinearisation. J. Appl. Comput. Mech.

  9. Oyelakin, I.S.; Mondal, S.; Sibanda, P.; Sibanda, D.: Bioconvection in Casson nanofluid flow with Gyrotactic microorganisms and variable surface heat flux. Int. J. Biomath. 12(04), 1950041 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Basir, M.F.M.; Hafidzuddin, M.E.H.; Naganthran, K.; Chaharborj, S.S.; Kasihmuddin, M.S.M.; Nazar, R.: Stability analysis of unsteady stagnation-point gyrotactic bioconvection flow and heat transfer towards the moving sheet in a nanofluid. Chin. J. Phys. 65, 538–553 (2020)

    Article  MathSciNet  Google Scholar 

  11. Awais, M.; Awan, S.E.; Raja, M.A.Z.; Shoaib, M.: Effects of Gyro-Tactic organisms in bio-convective nano-material with heat immersion, stratification, and viscous dissipation. Arab. J. Sci. Eng. 46(6), 5907–5920 (2021)

    Article  Google Scholar 

  12. Khan, S.A.; Waqas, H.; Naqvi, S.M.R.S.; Alghamdi, M.; Al-Mdallal, Q.: Cattaneo-Christov double diffusions theories with bio-convection in nanofluid flow to enhance the efficiency of nanoparticles diffusion. Case Stud. Therm. Eng. 26, 101017 (2021)

    Article  Google Scholar 

  13. Xu, Y.J.; Bilal, M.; Al-Mdallal, Q.; Khan, M.A.; Muhammad, T.: Gyrotactic microorganism flow of Maxwell nanofluid between two parallel plates. Sci. Rep. 11(1), 1–13 (2021)

    Google Scholar 

  14. Shafiq, A.; Lone, S.A.; Sindhu, T.N.; Al-Mdallal, Q.M.; Rasool, G.: Statistical modeling for bioconvective tangent hyperbolic nanofluid towards stretching surface with zero mass flux condition. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  15. Casson, N.: A flow equation for pigment-oil suspensions of the printing ink type. In: Mill, C.C. (Ed.) Rheology of Disperse Systems, pp. 84–104. Pergamon Press, Oxford (1959)

    Google Scholar 

  16. Bird, R.B.; Curfiss, C.F.; Amstrong, R.C.; Hassager, O.: Dynamics of Polymeric Liquids. Wiley, New York (1987)

    Google Scholar 

  17. Carreau, P.J.: Rheological equations from molecular network theories. Trans. Soc. Rheol. 116, 99–127 (1972)

    Article  Google Scholar 

  18. Naga Santoshi, P.; Ramana Reddy, G.V.; Padma, P.: Numerical scrutinization of three dimensional Casson–Carreau nano fluid flow. J. Appl. Comput. Mech. 6(3), 531–542 (2020)

    Google Scholar 

  19. Ali, B.; Rasool, G.; Hussain, S.; Baleanu, D.; Bano, S.: Finite element study of magnetohydrodynamics (MHD) and activation energy in Darcy–Forchheimer rotating flow of Casson Carreau nanofluid. Processes 8(9), 1185 (2020)

    Article  Google Scholar 

  20. Ghiasi, E.K.; Saleh, R.: Thermophysical investigation of unsteady Casson–Carreau fluid. INAE Lett. 4(4), 227–239 (2019)

    Article  Google Scholar 

  21. Sobamowo, G.; Adesina, O.A.; Jayesimi, L.: Magnetohydrodynamic flow of dissipative Casson–Carreau nanofluid over a stretching sheet embedded in a porous medium under the influence of thermal radiation and variable internal heat generation. Eng. Appl. Sci. Lett. 2(2), 18–36 (2019)

    Article  Google Scholar 

  22. Sarkar, T.; Arifuzzaman, S.M.; Reza, E.; Rabbi, S.; Khan, M.S.; Ahmmed, S.F.: Computational modelling of chemically reactive and radiative flow of Casson–Carreau nanofluids over an inclined cylindrical surface with bended Lorentz force presence in porous medium. AIP Conf. Proc. 2121(1), 050006 (2019)

    Article  Google Scholar 

  23. Oke, A.S.: Theoretical analysis of modified Eyring powell fluid flow. J. Taiwan Inst. Chem. Eng. 132, 104152 (2022). https://doi.org/10.1016/j.jtice.2021.11.019

    Article  Google Scholar 

  24. Oke, A.S.; Mutuku, W.N.: Significance of viscous dissipation on MHD Eyring–Powell flow past a convectively heated stretching sheet. Pramana 95, 4 (2021). https://doi.org/10.1007/s12043-021-02237-3

    Article  Google Scholar 

  25. Kinyanjui Kigio, J.; Winifred Nduku, M.; Abayomi Samuel, O.: Analysis of volume fraction and convective heat transfer on MHD Casson nanofluid over a vertical plate. Fluid Mech. 7(1), 1 (2021). https://doi.org/10.11648/j.fm.20210701.11

    Article  Google Scholar 

  26. Oke, A.S.; Mutuku, W.N.; Kimathi, M.; Animasaun, I.L.: Insight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force. Nonlinear Eng. 9(1), 398–411 (2020). https://doi.org/10.1515/nleng-2020-0025

    Article  Google Scholar 

  27. Fatunmbi, E.O.; Adeosun, A.T.; Salawu, S.O.: Entropy analysis of nonlinear radiative Casson nanofluid transport over an electromagnetic actuator with temperature-dependent properties. Partial Differ. Equ. Appl. Math. 4, 100152 (2021). https://doi.org/10.1016/j.padiff.2021.100152

    Article  Google Scholar 

  28. Animasaun, I.L.; Shah, N.A.; Wakif, A.; Mahanthesh, B.; Sivaraj, R.; Koriko, O.K.: Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-analysis, and Scrutinization. Chapman and Hall/CRC, New York (2022)

    Book  Google Scholar 

  29. Falkner, V.M.; Skan, S.F.: Some Approximate Solutions of the Boundary Layer Equations, British A. R. C., R. & M. No. 1314 (1930)

  30. Yih, K.A.: Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux. Acta Mech. 128(3), 173–181 (1998)

    Article  MATH  Google Scholar 

  31. White, F.M.; Majdalani, J.: Viscous fluid flow, Vol. 3, p. 433–434. McGraw-Hill, New York (2006)

    Google Scholar 

  32. Yacob, N.A.; Ishak, A.; Pop, I.: Falkner–Skan problem for a static or moving wedge in nanofluids. Int. J. Therm. Sci. 50(2), 133–139 (2011)

    Article  Google Scholar 

  33. Khan, W.A.; Pop, I.: Boundary layer flow past a wedge moving in a nanofluid. Math. Prob. Eng. Article ID: 637285 (2013)

  34. Khan, W.A.; Culham, R.; Haq, R.U.: Heat transfer analysis of MHD water functionalized carbon nanotube flow over a static/moving wedge. J. Nanomater. Article ID: 934367 (2015)

  35. Khan, M.; Azam, M.; Munir, A.: On unsteady Falkner–Skan flow of MHD Carreau nanofluid past a static/moving wedge with convective surface condition. J. Mol. Liq. 230, 48–58 (2017)

    Article  Google Scholar 

  36. Raju, C.S.K.; Hoque, M.M.; Sivasankar, T.: Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms. Adv. Powder Technol. 28(2), 575–583 (2017)

    Article  Google Scholar 

  37. Khan, M.; Sardar, H.: On steady two-dimensional Carreau fluid flow over a wedge in the presence of infinite shear rate viscosity. Results Phys. 8, 516–523 (2018)

    Article  Google Scholar 

  38. Dinarvand, S.; Rostami, M.N.; Pop, I.: A novel hybridity model for TiO2-CuO/water hybrid nanofluid flow over a static/moving wedge or corner. Sci. Rep. 9(1), 1–11 (2019)

    Article  Google Scholar 

  39. Hamid, A.; Khan, M.; Alshomrani, A.S.: Nonlinear radiation and chemical reaction effects on slip flow of Williamson nanofluid due to a static/moving wedge: a revised model. Appl. Nanosci. 10(8), 3171–3181 (2020)

    Article  Google Scholar 

  40. Muhammad, T.; Alamri, S.Z.; Waqas, H.; Habib, D.; Ellahi, R.: Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms. J. Therm. Anal. Calorim. 143(2), 945–957 (2021)

    Article  Google Scholar 

  41. Li, Y.X.; Hamid, A.; Khan, M.I.; Elmasry, Y.; Qayyum, S.; Kumar, R.V.; Madhukesh, J.K.; Prasannakumara, B.C.; Chu, Y.M.: Dual branch solutions (multi-solutions) for nonlinear radiative Falkner–Skan flow of Maxwell nanomaterials with heat and mass transfer over a static/moving wedge. Int. J. Mod. Phys. C IJMPC 32(10), 1–20 (2021)

    MathSciNet  Google Scholar 

  42. Saranya, S.; Al-Mdallal, Q.M.; Javed, S.: Shifted Legendre collocation method for the solution of unsteady viscous-Ohmic dissipative hybrid ferrofluid flow over a cylinder. Nanomaterials 11(6), 1512 (2021)

    Article  Google Scholar 

  43. Oke, A.S.; Animasaun, I.L.; Mutuku, W.N.; Kimathi, M.; Shah, N.A.; Saleem, S.: Significance of Coriolis force, volume fraction, and heat source/sink on the dynamics of water conveying 47 nm alumina nanoparticles over a uniform surface. Chin. J. Phys. 71, 716–727 (2021)

    Article  MathSciNet  Google Scholar 

  44. Saleem, S.; Animasaun, I.L.; Yook, S.-J.; Al-Mdallal, Q.M.; Shah, N.A.; Faisal, M.: Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface: significance of thermo-migration and Brownian motion. Surf. Interfaces 30, 101854 (2022). https://doi.org/10.1016/j.surfin.2022.101854

    Article  Google Scholar 

  45. Abegunrin, O.A.; Okhuevbie, S.O.; Animasaun, I.L.: Comparison between the flow of two non-Newtonian fluids over an upper horizontal surface of paraboloid of revolution: Boundary layer analysis. Alex. Eng. J. 55(3), 1915–1929 (2016). https://doi.org/10.1016/j.aej.2016.08.002

    Article  Google Scholar 

  46. Khan, Y.: A series solution of the boundary value problem arising in the application of fluid mechanics. Int. J. Numer. Meth. Heat Fluid Flow 28(10), 2480–2490 (2018). https://doi.org/10.1108/HFF-11-2017-0474

    Article  Google Scholar 

  47. Makinde, O.D.; Sandeep, N.; Ajayi, T.M.; Animasaun, I.L.: Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution. Int. J. Nonlinear Sci. Numer. Simul. 19(2), 93–106 (2018). https://doi.org/10.1515/ijnsns-2016-0087

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasem M. Al-Mdallal.

Appendix 1: Non-dimensional Parameters and Their Expression

Appendix 1: Non-dimensional Parameters and Their Expression

Mathematical

Expression

Name of the parameter

Mathematical Expression

Name of the parameter

\(We=\sqrt{\frac{{\Gamma }^{2}\left(m+1\right){U}_{b}^{3}}{2\nu x}}\)

Weissenberg number

\(\xi =\frac{{U}_{w}}{{U}_{b}}\)

Velocity ratio parameter

\(A=\frac{2c}{\left(m+1\right)a{x}^{m-1}}\)

Unsteadiness parameter

\(\mathrm{Pr}=\frac{k}{\nu \rho {C}_{p}}\)

Prandtl number

\(\Lambda =\frac{2x{\beta }^{*}g\left(1-{C}_{\infty }\right)({T}_{w}-{T}_{\infty })}{{U}_{b}^{2}}\)

Mixed convection parameter

\(\omega =\frac{16{\sigma }^{*} {T}_{\infty }^{3}}{3{k}^{*}{k}_{f}}\)

Radiation parameter

\({N}_{r}=\frac{({\rho }_{p}-{\rho }_{f})({C}_{w}-{C}_{\infty })}{{\rho }_{f}{\beta }^{*}\left(1-{C}_{\infty }\right)({T}_{w}-{T}_{\infty })}\)

Buoyancy ratio parameter

\(Sc=\frac{\nu }{{D}_{B}}\)

Schmidt number

\({R}_{b}=\frac{\gamma ({\rho }_{m}-{\rho }_{f})({N}_{w}-{N}_{\infty })}{{\rho }_{f}{\beta }^{*}\left(1-{C}_{\infty }\right)({T}_{w}-{T}_{\infty })}\)

Bio-convection Rayleigh parameter

\(S{c}_{b}=\frac{\nu }{{D}_{m}}\)

Bio-convective Schmidt number

\({N}_{b}=\frac{\tau {D}_{B}}{\nu }\)

Brownian motion parameter

\(Pe=\frac{b{W}_{c}}{{D}_{m}}\)

Bio-convective Peclet number

\({N}_{t}=\frac{\tau {D}_{T}({T}_{w}-{T}_{\infty })}{{\alpha }_{m}{T}_{\infty }}\)

Thermophoresis parameter

\(\delta =\frac{{N}_{\infty }}{{N}_{w}-{N}_{\infty }}\)

Microorganism concentration difference

\(H{a}^{2}=\frac{\sigma {B}_{0}^{2}}{\rho a{x}^{m-1}}\)

Hartmann number

  

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saranya, S., Al-Mdallal, Q.M. & Animasaun, I.L. Shifted Legendre Collocation Analysis of Time-Dependent Casson Fluids and Carreau Fluids Conveying Tiny Particles and Gyrotactic Microorganisms: Dynamics on Static and Moving Surfaces. Arab J Sci Eng 48, 3133–3155 (2023). https://doi.org/10.1007/s13369-022-07087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07087-8

Keywords

Navigation