Skip to main content
Log in

On the Relationship Between Northwest–Northcentral Pacific SST and Low-level Jet Over the Arabian Sea

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study examines variability in Low-Level Jet (LLJ) over the Indian Ocean (5° N: 15° N; 50° E: 70° E) during June–July–August (JJA), using reanalysis data for the past four decades (1979–2019). A significant positive trend (0.04 ms−1 yr−1) in the intensity of LLJ is observed during the study period. We examined the relationship between LLJ and Sea Surface Temperature (SST) anomalies over the Northern hemisphere using linear regression. On interannual time scales, the significant relationship associated with El Niño-Southern Oscillation (ENSO) events and LLJ intensity anomalies is prominent in the equatorial Pacific Ocean. When the ENSO effects were removed, a strong co-variability is observed between LLJ intensity and SST anomalies over the Northwest–Northcentral Pacific during the JJA season. Our analysis suggests that SST over this region is correlated with the upper-tropospheric geopotential height anomalies. These geopotential anomalies were favourable for easterlies in the upper troposphere, intensifying the low-level westerlies and hence LLJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jain, S.K.; Kumar, V.: Trend analysis of rainfall and temperature data for India. Curr. Sci. 102(1), 37 (2012)

    Google Scholar 

  2. Bunker A. F,: Interaction of summer monsoon air with the Arabian Sea. In: Symposium on Meteorological Results of the International Indian Ocean Expedition, Bombay. (1965)

  3. Joseph, P.V.; Raman, P.: Existence of low level westerly jet stream over peninsular India during July. Indian J. Meteorol. Geophys. 17, 407–410 (1966)

    Google Scholar 

  4. Findlater, J.: Interhemispheric transport of air in the lower troposphere over the western Indian Ocean. J. R. Met. Soc. 95, 400–403 (1969). https://doi.org/10.1002/qj.49709540412

    Article  Google Scholar 

  5. Findlater, J.: A major low level air current near the Indian Ocean during the northern summer. Q. J. R. Meteorol. Soc. 95, 362–380 (1969). https://doi.org/10.1002/qj.49709540409

    Article  Google Scholar 

  6. Joseph, P.V.; Sijikumar, S.: Intraseasonal variability of the low-level jet stream of the Asian summer monsoon. J. Clim. 17, 1449–1458 (2004). https://doi.org/10.1175/1520-0442(2004)017%3c1449:IVOTLJ%3e2.0.CO;2

    Article  Google Scholar 

  7. Swathi, M.S.; Izumo, T.; Lengaigne, M.; Vialard, J.; Kumar, M.R.R.: Remote influences on the Indian monsoon low - level jet intraseasonal variations. Clim. Dyn. (2020). https://doi.org/10.1007/s00382-019-05108-1

    Article  Google Scholar 

  8. Jayaram, C.; Chacko, N.; Joseph, A.A.; Balchand, A.N.: Interannual variability of upwelling indices in the Southeastern Arabian Sea: a satellite based study. Ocean Sci. J. (2010). https://doi.org/10.1007/s12601-010-0003-6

    Article  Google Scholar 

  9. Schott, F.A.; McCreary, J.P.: The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 51, 1–123 (2001). https://doi.org/10.1016/S0079-6611(01)00083-0

    Article  Google Scholar 

  10. Smitha, B.R.; Sanjeevan, V.N.; Vimalkumar, K.G.; Revichandran, C.: On the upwelling off the southern tip and along the west coast of India. J. Coast. Res. (2008). https://doi.org/10.2112/06-0779.1

    Article  Google Scholar 

  11. Lévy, M.; Shankar, D.; André, J.M.; Shenoi, S.S.C.; Durand, F.; de Boyer Montégut, C.: Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms. J. Geophys. Res. Ocean. 112, C12014 (2007). https://doi.org/10.1029/2007JC004090

    Article  Google Scholar 

  12. Sanil Kumar, V.; George, J.: Influence of Indian summer monsoon variability on the surface waves in the coastal regions of eastern Arabian Sea. Ann. Geophys. 34, 871–885 (2016). https://doi.org/10.5194/angeo-34-871-2016

    Article  Google Scholar 

  13. Stensrud, D.J.: Importance of low-level jets to climate: a review. J. Clim. 9, 1698–1711 (1996). https://doi.org/10.1175/1520-0442(1996)009%3c1698:IOLLJT%3e2.0.CO;2

    Article  Google Scholar 

  14. Arpe, K.; Dümenil, L.; Giorgetta, M.A.: Variability of the Indian monsoon in the ECHAM3 model: sensitivity to sea surface temperature, soil moisture, and the stratospheric quasi-biennial oscillation. J. Clim. 11, 1837–1858 (1998). https://doi.org/10.1175/1520-0442-11.8.1837

    Article  Google Scholar 

  15. Halpern, D.; Woiceshyn, P.M.: Somali jet in the Arabian Sea, El Niño, and India rainfall. J. Clim. 14, 434–441 (2001). https://doi.org/10.1175/1520-0442(2001)014%3c0434:SJITAS%3e2.0.CO;2

    Article  Google Scholar 

  16. Wang, H.; Xue, F.: The interannual variability of somali jet and its influences on the inter-hemispheric water vapor transport and the east asian summer rainfall. Chinese J. Geophys. 46, 11–20 (2003). https://doi.org/10.1002/cjg2.311

    Article  Google Scholar 

  17. Power, S.; Casey, T.; Folland, C.; Colman, A.; Mehta, V.: Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. (1999). https://doi.org/10.1007/s003820050284

    Article  Google Scholar 

  18. Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C.: A pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1080 (1997). https://doi.org/10.1175/1520-0477(1997)078%3c1069:APICOW%3e2.0.CO;2

    Article  Google Scholar 

  19. Henley, B.J.; Gergis, J.; Karoly, D.J.; Power, S.; Kennedy, J.; Folland, C.K.: A tripole index for the interdecadal pacific oscillation. Clim. Dyn. 45, 3077–3090 (2015). https://doi.org/10.1007/s00382-015-2525-1

    Article  Google Scholar 

  20. Joshi, M.K.; Kucharski, F.: Impact of interdecadal pacific oscillation on Indian summer monsoon rainfall: an assessment from CMIP5 climate models. Clim. Dyn. 48, 2375–2391 (2017). https://doi.org/10.1007/s00382-016-3210-8

    Article  Google Scholar 

  21. Krishnamurthy, L.; Krishnamurthy, V.: Influence of PDO on South Asian summer monsoon and monsoon-ENSO relation. Clim. Dyn. 42, 2397–2410 (2014). https://doi.org/10.1007/s00382-013-1856-z

    Article  Google Scholar 

  22. Wilson, S.S.; Joseph, P.V.; Mohanakumar, K.; Johannessen, O.M.: Interannual and long term variability of low level jetstream of the Asian summer monsoon. Tellus Ser. A Dyn. Meteorol. Oceanogr. 70(1), 1–9 (2018). https://doi.org/10.1080/16000870.2018.1445380

    Article  Google Scholar 

  23. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; Bechtold, P.; Beljaars, A.C.M.; van de Berg, L.; Bidlot, J.; Bormann, N.; Delsol, C.; Dragani, R.; Fuentes, M.; Geer, A.J.; Haimberger, L.; Healy, S.B.; Hersbach, H.; Hólm, E.V.; Isaksen, L.; Kållberg, P.; Köhler, M.; Matricardi, M.; Mcnally, A.P.; Monge-Sanz, B.M.; Morcrette, J.J.; Park, B.K.; Peubey, C.; de Rosnay, P.; Tavolato, C.; Thépaut, J.N.; Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011). https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  24. Rayner, N.A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003). https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  25. Boos, W.R.; Emanuel, K.A.: Annual intensification of the Somali jet in a quasi-equilibrium framework: observational composites. Q. J. R. Meteorol. Soc. 135, 319–335 (2009). https://doi.org/10.1002/qj.388

    Article  Google Scholar 

  26. Aneesh, S.; Sijikumar, S.: Changes in the south Asian monsoon low level jet during recent decades and its role in the monsoon water cycle. J. Atmos. Solar-Terrestrial Phys. 138–139, 47–53 (2016). https://doi.org/10.1016/j.jastp.2015.12.009

    Article  Google Scholar 

  27. Sandeep, S.; Ajayamohan, R.S.: Poleward shift in Indian summer monsoon low level jetstream under global warming. Clim. Dyn. (2015). https://doi.org/10.1007/s00382-014-2261-y

    Article  Google Scholar 

  28. Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B.N.: Drying of Indian subcontinent by rapid Indian ocean warming and a weakening land-sea thermal gradient. Nat. Comm. (2015). https://doi.org/10.1038/ncomms8423

    Article  Google Scholar 

  29. Vidya, P.J.; Ravichandran, M.; Subeesh, M.P.; Chatterjee, S.; Nuncio, M.: Global warming hiatus contributed weakening of the mascarene high in the Southern Indian Ocean. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-59964-7

    Article  Google Scholar 

  30. Goswami, B.N.; Xavier, P.K.: Dynamics of ‘internal’ interannual variability of the Indian summer monsoon in a GCM. J. Geophys. Res. Atmos. 110, 1–17 (2005). https://doi.org/10.1029/2005JD006042

    Article  Google Scholar 

  31. Schott, F.: Monsoon response of the somali current and associated upwelling. Prog. Oceanogr. 12(3), 357–381 (1983). https://doi.org/10.1016/0079-6611(83)90014-9

    Article  Google Scholar 

  32. Huang, G.; Hu, K.; Xie, S.P.: Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study. J. Clim. 23, 5294–5304 (2010). https://doi.org/10.1175/2010JCLI3577.1

    Article  Google Scholar 

  33. Sun, C.; Kucharski, F.; Li, J.; Jin, F.F.; Kang, I.S.; Ding, R.: Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun. (2017). https://doi.org/10.1038/ncomms15998

    Article  Google Scholar 

  34. Liu, Y.; Sun, C.; Li, J.: The boreal summer zonal wavenumber-3 trend pattern and its connection with surface enhanced warming. J. Clim. (2022). https://doi.org/10.1175/JCLI-D-21-0460.1

    Article  Google Scholar 

  35. Kripalani, R.H.; Kulkarni, A.; Singh, S.V.: Association of the Indian summer monsoon with the northern hemisphere mid-latitude circulation. Int. J. Climatol. (1997). https://doi.org/10.1002/(SICI)1097-0088(199708)17:10%3c1055::AID-JOC180%3e3.0.CO;2-3

    Article  Google Scholar 

  36. Mini, V.K.; Hosalikar, K.S.; Haridasan, N.; Kausik, K.: Study of tropical tropospheric and lower stratospheric zonal wind variability in the context of dry and wet Indian summer monsoon years. Clim. Dyn. (2019). https://doi.org/10.1007/s00382-019-04891-1

    Article  Google Scholar 

  37. Kennel, C.F.; Yulaeva, E.: Influence of Arctic sea-ice variability on Pacific trade winds. Proc. Natl. Acad. Sci. U. S. A. 117, 2824–2834 (2020). https://doi.org/10.1073/pnas.1717707117

    Article  Google Scholar 

Download references

Acknowledgements

The authors like to thank Director CSIR- NIO,  and Director NCPOR, MOES for their support in this study. The wind data is obtained from the ECMRF website http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/. SST data are obtained from the HadISST website http://www.metoffice.gov.uk/hadobs/hadisst/. The first author would like to acknowledge Dr. Sanil Kumar, chief scientist and head of the Ocean Engineering Division, CSIR- NIO, for all the support. The authors also thank anonymous reviewers for their valuable comments.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesbin George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, J., Murukesh, N. On the Relationship Between Northwest–Northcentral Pacific SST and Low-level Jet Over the Arabian Sea. Arab J Sci Eng 48, 615–623 (2023). https://doi.org/10.1007/s13369-022-07045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07045-4

Keywords

Navigation