Skip to main content

Advertisement

Log in

Investigation of Various Factors on Iodide Depletion Efficiency in Photocatalytic Water Splitting in Optofluidic Microreactors

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Water splitting is a promising method to produce hydrogen as fuel. But it has low production rate in comparison with the common methods. There are some developments in microreactors and photocatalysts that combine these two methods to increase the production rate. Design of reaction chamber and also the loading of photocatalysts affect the outcome of the reaction. In this study, three optofluidic microreactors with different reaction chambers were fabricated. To monitor the performance of the fabricated microreactors, a water splitting reaction was performed in the presence of iodide/iodate as a redox mediator. Various factors such as iodide concentration, flow rate, and the amount of Pt deposited on Pt/TiO2 were investigated. The durability of used photocatalyst in micro-spiraled and micro-pillared microreactors was also studied. The optofluidic microreactor with pillared structure showed higher hydrogen production compared to the spiral and grooved structure. The optimal value of Pt loading is 1% w/w so that the iodide depletion efficiency changes over time from 5.7 to 3.8% while that for 1.5% w/w varies from 3.2 to 0.67%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gholipour, M.R.; Dinh, C.T.; Béland, F.; Do, T.O.: Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7(18), 8187–8208 (2015)

    Article  Google Scholar 

  2. Turner, J.A.: Sustainable hydrogen production. Science 305(5686), 972–974 (2004)

    Article  Google Scholar 

  3. Liao, C.H.; Huang, C.W.; Wu, J.: Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2(4), 490–516 (2012)

    Article  Google Scholar 

  4. Grigoriev, S.A.; Porembsky, V.I.; Fateev, V.N.: Pure hydrogen production by PEM electrolysis for hydrogen energy. Int. J. Hydrogen Energy 31(2), 171–175 (2006)

    Article  Google Scholar 

  5. Zhang, H.; Du, C.; Wu, A.; Bo, Z.; Yan, J.; Li, X.: Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production. Int. J. Hydrogen Energy 39(24), 12620–12635 (2014)

    Article  Google Scholar 

  6. Łukajtis, R.; Hołowacz, I.; Kucharska, K.; Glinka, M.; Rybarczyk, P.; Przyjazny, A.; Kamiński, M.: Hydrogen production from biomass using dark fermentation. Renew. Sustain. Energy Rev. 91, 665–694 (2018)

    Article  Google Scholar 

  7. Li, Y.; Guo, L.; Zhang, X.; Jin, H.; Lu, Y.: Hydrogen production from coal gasification in supercritical water with a continuous flowing system. Int. J. Hydrogen Energy 35(7), 3036–3045 (2010)

    Article  Google Scholar 

  8. Ahsan, S.S.; Gumus, A.; Erickson, D.: Redox mediated photocatalytic water-splitting in optofluidic microreactors. Lab Chip 13(3), 409–414 (2013)

    Article  Google Scholar 

  9. Dincer, I.; Zamfirescu, C.: Sustainable energy systems and applications. Springer, Berlin (2011)

    Google Scholar 

  10. Steinfeld, A.: Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int. J. Hydrogen Energy 27(6), 611–619 (2002)

    Article  Google Scholar 

  11. Guan, Y.; Deng, M.; Yu, X.; Zhang, W.: Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem. Eng. J. 19(1), 69–73 (2004)

    Article  Google Scholar 

  12. Das, D.; Veziroglu, T.N.: Advances in biological hydrogen production processes. Int. J. Hydrogen Energy 33(21), 6046–6057 (2008)

    Article  Google Scholar 

  13. Fujishima, A.; Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)

    Article  Google Scholar 

  14. Al-Azri, Z.H.; Jovic, V.; Chen, W.T.; Sun-Waterhouse, D.; Metson, J.B.; Waterhouse, G.I.: Performance evaluation of Pd/TiO2 and Pt/TiO2 photocatalysts for hydrogen production from ethanol-water mixtures. Int. J. Nanotechnol. 11(5–678), 695–703 (2014)

    Article  Google Scholar 

  15. Dholam, R.; Patel, N.; Adami, M.; Miotello, A.: Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2 composite thin films photocatalyst. Int. J. Hydrogen Energy 34(13), 5337–5346 (2009)

    Article  Google Scholar 

  16. Chatterjee, D.: Effect of excited state redox properties of dye sensitizers on hydrogen production through photo-splitting of water over TiO2 photocatalyst. Catal. Commun. 11(5), 336–339 (2010)

    Article  Google Scholar 

  17. Sharifi, T.; Mohammadi, T.; Momeni, M.M.; Kusic, H.; Rokovic, M.K.; Bozic, A.L.; Ghayeb, Y.: Influence of photo-deposited Pt and Pd onto chromium doped TiO2 nanotubes in photo-electrochemical water splitting for hydrogen generation. Catalysts 11(2), 212 (2021)

    Article  Google Scholar 

  18. Jing, D.; Guo, L.; Zhao, L.; Zhang, X.; Liu, H.; Li, M.; Zhang, K.: Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int. J. Hydrogen Energy 35(13), 7087–7097 (2010)

    Article  Google Scholar 

  19. Lo, C.C.; Huang, C.W.; Liao, C.H.; Wu, J.C.: Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. Int J Hydr Energy 35(4), 1523–1529 (2010)

    Article  Google Scholar 

  20. Agrafiotis, C.; Roeb, M.; Konstandopoulos, A.G.; Nalbandian, L.; Zaspalis, V.T.; Sattler, C.; Steele, A.M.: Solar water splitting for hydrogen production with monolithic reactors. Sol. Energy 79(4), 409–421 (2005)

    Article  Google Scholar 

  21. Li, L.; Chen, R.; Zhu, X.; Wang, H.; Wang, Y.; Liao, Q.; Wang, D.: Optofluidic microreactors with TiO2-coated fiberglass. ACS Appl. Mater. Interfaces. 5(23), 12548–12553 (2013)

    Article  Google Scholar 

  22. Martino, M.; Ruocco, C.; Meloni, E.; Pullumbi, P.; Palma, V.: Main hydrogen production processes: an overview. Catalysts (2021). https://doi.org/10.3390/catal11050547

    Article  Google Scholar 

  23. Serafin, J.; Soler, L.; Vega, D.; Rodríguez, Á.; Llorca, J.: Macroporous silicon coated with M/TiO2 (M=Au, Pt) as a highly efficient photoreactor for hydrogen production. Chem. Eng. J. 393, 124701 (2020)

    Article  Google Scholar 

  24. Rambabu, P.; Patel, S.; Gogoi, D.; Uppaluri, R.V.S.; Peela, N.R.: Optofluidic microreactor for the photocatalytic water splitting to produce green hydrogen. Int. J. Hydrogen Energy 47(4), 2152–2163 (2022)

    Article  Google Scholar 

  25. Pala, L.P.R.; Peela, N.R.: Green hydrogen production in an optofluidic planar microreactor via photocatalytic water splitting under visible/simulated sunlight irradiation. Energy Fuels 35, 19737–19747 (2021)

    Article  Google Scholar 

  26. Qi, L.; Cheng, B.; Yu, J.; Ho, W.: High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature. J. Hazard. Mater. 301, 522–530 (2016)

    Article  Google Scholar 

  27. Li, L.; Chen, R.; Liao, Q.; Zhu, X.; Wang, G.; Wang, D.: High surface area optofluidic microreactor for redox mediated photocatalytic water splitting. Int. J. Hydrogen Energy 39(33), 19270–19276 (2014)

    Article  Google Scholar 

  28. Chen, R.; Li, L.; Zhu, X.; Wang, H.; Liao, Q.; Zhang, M.X.: Highly-durable optofluidic microreactor for photocatalytic water splitting. Energy 83, 797–804 (2015)

    Article  Google Scholar 

  29. Ni, M.; Leung, M.K.; Leung, D.Y.; Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007)

    Article  Google Scholar 

  30. Ahsan, S.S.; Erickson, D.: (2012) Microfluidic photocatalytic water-splitting reactors. In ASME international mechanical engineering congress and exposition (Vol. 45233, pp. 965–969). American Society of Mechanical Engineers.

  31. Abe, R.; Sayama, K.; Domen, K.; Arakawa, H.: A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator. Chem. Phys. Lett. 344(3–4), 339–344 (2001)

    Article  Google Scholar 

  32. Furman, M.; Corbel, S.; Le Gall, H.; Zahraa, O.; Bouchy, M.: Influence of the geometry of a monolithic support on the efficiency of photocatalyst for air cleaning. Chem. Eng. Sci. 62, 5312–5316 (2007)

    Article  Google Scholar 

  33. Cheng, M.; Huang, Y.; Gao, R.; Bai, S.: Numerical simulation of photocatalytic reduction of gas phase CO2 in optofluidic microreactor. Catal. Lett. 149, 3000–3011 (2019)

    Article  Google Scholar 

  34. Hakki, H.K.; Allahyari, S.: Intensification of photocatalytic wastewater treatment using a novel continuous microcapillary photoreactor irradiated by visible LED lights. Chem. Eng. Process. 175, 108937 (2022)

    Article  Google Scholar 

  35. Oralli, E.; Dincer, I.; Naterer, G.F.: Solar photocatalytic reactor performance for hydrogen production from incident ultraviolet radiation. Int. J. Hydrogen Energy 36, 9446–9452 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support of Babol Noshirvani University of Technology through Grant Program No. BNUT/388003/97.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Reza Shabanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghery, R., Shabanian, S.R., Ahmadpour, J. et al. Investigation of Various Factors on Iodide Depletion Efficiency in Photocatalytic Water Splitting in Optofluidic Microreactors. Arab J Sci Eng 48, 8507–8518 (2023). https://doi.org/10.1007/s13369-022-07014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07014-x

Keywords

Navigation