Skip to main content

Advertisement

Log in

Jerk Optimized Motion Planning of Redundant Space Robot Based on Grey-Wolf Optimization Approach

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the joint space, calculating the jerk-optimized trajectory of a redundant space manipulator is a significant issue in motion planning. The third derivative of desired joint trajectory position, known as a jerk, influences the smooth and effective movement of the manipulator. Using the conventional approach for multi-parameters selection, it is challenging to get an optimal solution. This can be taken care of by using an advanced optimization technique, grey wolf optimization which provides such search capabilities having the potential to produce optimum results. Therefore, to implement jerk-optimized motion planning, this work presents an approach based on grey wolf optimization, constrained by the joint inter-knot parameters in the joint space. It is expected that the proposed approach will impart the lowest joint jerk in comparison with other existing approaches like the genetic algorithm and particle swarm optimization. Consequently, minimal deviation of the joint trajectory can be observed at each joint. For various time intervals, minimal jerk values of the mean, maximum, and minimum for all joint angles are experienced compared to the genetic algorithm approach. Hence, smooth joint trajectories are generated for each joint, enabling the end-effector to move the desired pose with minimal jerk enhancing the stability of the manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Abbreviations

\(H_{b} ,H_{bm}\) :

Inertia matrix and coupling inertia matrix for robot base, respectively

\(\vec{\theta }_{1} ,\vec{\theta }_{2} , \ldots ,\vec{\theta }_{8}\) :

Joint angle vector of the manipulator

\(y_{eo}\), \(y_{ed}\), \(\theta^{e}\) :

Starting, desired pose, orientation of end-effector, respectively

\(r_{o} ,r_{e}\) :

Position vector of the centroid of robot base and end-effector, respectively

\(d_{c}\) :

Initial pose of manipulator base

\(\dot{\phi }\), \(\dot{\theta }\) :

Angular velocity of the base and effector, respectively

\(\dot{T}_{e}\), \(\dot{p}\) :

Translational and joint velocity of end effector, respectively

\(\psi\) :

Euler angles

\(\varsigma\), \(\tau^{ * }\) :

Normalized time, real time of jth trajectory segment

\(a_{i}\) :

Position vector from joint \(j_{i}\) to mass centre of link (\(c_{i}\))

\(b_{i}\) :

Position vector from mass centre of link (\(c_{i}\)) to joint \(j_{i + 1}\)

\(\alpha ,\beta ,\delta\) :

Different layers of grey wolves

\(\vec{A}_{p}\) :

Optimal position of grey wolves with optimized fitness value

\(t\) :

Total number of iterations

\(\vec{X}(t)\), \(\vec{X}(t + 1)\), \(\vec{X}_{w} (t)\) :

Position of first grey wolf, denotes position of next grey wolves after (t + 1) iterations, position of \(\alpha ,\beta ,\delta\) grey, wolves, respectively

\(\vec{N},\vec{P}\) :

Vectors for updated position of grey wolves

\(\vec{y}_{1} ,\vec{y}_{2}\) :

Random vectors in range of [0, 2]

\(\vec{n}\) :

Vectors in range of [0, 5]

\(\vec{X}_{\alpha } ,\vec{X}_{\beta } ,\vec{X}_{\delta }\) :

Updated position of \(\alpha ,\beta ,\delta\) grey wolves after hunting

\(A_{\alpha }\), \(A_{\beta }\), \(A_{\delta }\) :

Optimal position for \(\alpha ,\beta ,\delta\) grey wolves after hunting

\(\dot{u}_{c} ,\ddot{u}_{c}\) :

Velocity and acceleration of each joint, respectively

GWO:

Grey wolf optimization

GA:

Genetic algorithm

GJM:

Generalized Jacobian matrix

EDM:

Enhanced disturbance map

BPP:

Bidirectional path planning

PIW:

Path independent workspace

RNS:

Reaction null space

HDC:

Hybrid dynamic coupling

OTPJS:

Optimum trajectory planning in joint space

PDW:

Path dependent workspaces

DOF:

Degree of freedom

PSO:

Particle swarm optimization

OTG:

Optimal trajectory generation

References

  1. Shrivastava, A.; Dalla, V.K.; Dal, P.N.: Space debris manipulation by cooperative redundant planar robots with minimized trajectory error. Arab. J. Sci. Eng. 2, 1–8 (2022)

    Google Scholar 

  2. Fang, Y.; Qi, J.; Hu, J.; Wang, W.; Peng, Y.: An approach for jerk-continuous trajectory generation of robotic manipulators with kinematical constraints. Mech. Mach. Theory 1(153), 103957 (2020)

    Google Scholar 

  3. Zhang, Z.; Ge, S.S.: Partial feedback linearization control of space flexible-link manipulator with geometric nonlinearity. In: 2014 IEEE International Conference on Information and Automation (ICIA), pp. 1102–1107. IEEE (2014)

  4. Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R.: Trajectory planning in robotics. Math. Comput. Sci. 6(3), 269–279 (2012)

    MathSciNet  Google Scholar 

  5. Freeman, P.: Minimum jerk trajectory planning for trajectory constrained redundant robots. Washington University, St. Louis (2012)

    Google Scholar 

  6. Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R.: Path planning and trajectory planning algorithms: a general overview. In: Carbone, G.; Gomez-Bravo, F. (Eds.) Motion and Operation Planning of Robotic Systems, pp. 3–27. Springer, Berlin (2015)

    Google Scholar 

  7. Lu, S.; Ding, B.; Li, Y.: Minimum-jerk trajectory planning pertaining to a translational 3-degree-of-freedom parallel manipulator through piecewise quintic polynomials interpolation. Adv. Mech. Eng. (2020). https://doi.org/10.1177/1687814020913667

    Article  Google Scholar 

  8. Zhang, F.; Fu, Y.; Wang, S.: An adaptive variable structure control of the robot satellite system with floating base in Cartesian space. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230(18), 3241–3252 (2016)

    Google Scholar 

  9. Liu, H.; Lai, X.; Wu, W.: Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints. Robot. Comput. Integr. Manuf. 29(2), 309–317 (2013)

    Google Scholar 

  10. Yoshida, K.; Umetani, Y.: Control of space manipulators with generalized Jacobian matrix. In: Xu, Y.; Kanade, T. (Eds.) Space Robotics: Dynamics and Control, pp. 165–204. Springer, Boston (1993)

    Google Scholar 

  11. Dalla, V.K.; Pathak, P.M.: Curve-constrained collision-free trajectory control of hyper-redundant planar space robot. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 231(4), 282–298 (2017)

    Google Scholar 

  12. Sagara, S.; Taira, Y.: Digital control of space robot manipulators with velocity type joint controller using transpose of generalized Jacobian matrix. Artif. Life Robot. 13(1), 355–358 (2008)

    Google Scholar 

  13. Yan, L.; Yuan, H.; Xu, W.; Hu, Z.; Liang, B.: Generalized relative Jacobian matrix of space robot for dual-arm coordinated capture. J. Guidance Control Dyn. 41(5), 1202–1208 (2018)

    Google Scholar 

  14. Giordano, A.M.; Ott, C.; Albu-Schäffer, A.: Coordinated control of spacecraft’s attitude and end-effector for space robots. IEEE Robot. Autom. Lett. 4(2), 2108–2115 (2019)

    Google Scholar 

  15. Cheng, Z.H.; Minghe, J.I.; Yechao, L.I.; Zongwu, X.I.; Hong, L.I.: Hybrid task priority-based motion control of a redundant free-floating space robot. Chin. J. Aeronaut. 30(6), 2024–2033 (2017)

    Google Scholar 

  16. Nakamura, Y.; Mukherjee, R.: Nonholonomic path planning of space robots via bi-directional approach. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1764–1769. IEEE (1990)

  17. Luo, J.; Zong, L.; Wang, M.; Yuan, J.: Optimal capture occasion determination and trajectory generation for space robots grasping tumbling objects. Acta Astronaut. 1(136), 380–386 (2017)

    Google Scholar 

  18. Minghe, J.I.; Cheng, Z.H.; Yechao, L.I.; Hong, L.I.: Analysis of reaction torque-based control of a redundant free-floating space robot. Chin. J. Aeronaut. 30(5), 1765–1776 (2017)

    Google Scholar 

  19. Zhang, X.; Liu, J.; Gao, Q.; Ju, Z.: Adaptive robust decoupling control of multi-arm space robots using time-delay estimation technique. Nonlinear Dyn. 100(3), 2449–2467 (2020)

    Google Scholar 

  20. Dalla, V.K.; Pathak, P.M.: Trajectory tracking control of a group of cooperative planar space robot systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 229(10), 885–901 (2015)

    Google Scholar 

  21. Shrivastava, A.; Dalla, V.K.: Failure control and energy optimization of multi-axes space manipulator through genetic algorithm approach. J. Braz. Soc. Mech. Sci. Eng. 43(10), 1–7 (2021)

    Google Scholar 

  22. Fang, Y.; Hu, J.; Liu, W.; Shao, Q.; Qi, J.; Peng, Y.: Smooth and time-optimal S-curve trajectory planning for automated robots and machines. Mech. Mach. Theory 1(137), 127–153 (2019)

    Google Scholar 

  23. Morlock, M.; Bajrami, V.; Seifried, R.: Trajectory tracking with collision avoidance for a parallel robot with flexible links. Control Eng. Pract. 1(111), 104788 (2021)

    Google Scholar 

  24. Chen, D.; Zhang, Y.: Minimum jerk norm scheme applied to obstacle avoidance of redundant robot arm with jerk bounded and feedback control. IET Control Theory Appl. 10(15), 1896–1903 (2016)

    MathSciNet  Google Scholar 

  25. Damaševičius, R.; Maskeliūnas, R.; Narvydas, G.; Narbutaitė, R.; Połap, D.; Woźniak, M.: Intelligent automation of dental material analysis using robotic arm with Jerk optimized trajectory. J. Ambient Intell. Humaniz. Comput. 11(12), 6223–6234 (2020)

    Google Scholar 

  26. Xiao, P.; Ju, H.; Li, Q.: Point-to-point trajectory planning for space robots based on jerk constraints. Rev. Sci. Instrum. 92(9), 094501 (2021)

    Google Scholar 

  27. Dalla, V.K.; Pathak, P.M.: Impedance control in multiple cooperative space robots pulling a flexible wire. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233(6), 2190–2205 (2019)

    Google Scholar 

  28. Yang, S.; Wen, H.; Jin, D.: Trajectory planning of dual-arm space robots for target capturing and base manoeuvring. Acta Astronaut. 1(164), 142–151 (2019)

    Google Scholar 

  29. Dai, C.; Lefebvre, S.; Yu, K.M.; Geraedts, J.M.; Wang, C.C.: Planning jerk-optimized trajectory with discrete time constraints for redundant robots. IEEE Trans. Autom. Sci. Eng. 17(4), 1711–1724 (2020)

    Google Scholar 

  30. Dubowsky, S.; Torres, M.A.: Path planning for space manipulators to minimize spacecraft attitude disturbances. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2522–2528. IEEE (1991)

  31. Solovey, K.; Kleinbort, M.: The critical radius in sampling-based motion planning. Int. J. Robot. Res. 39(2–3), 266–285 (2020)

    Google Scholar 

  32. Wang, M.; Luo, J.; Walter, U.: A non-linear model predictive controller with obstacle avoidance for a space robot. Adv. Space Res. 57(8), 1737–1746 (2016)

    Google Scholar 

  33. Li, Y.; Hao, X.; She, Y.; Li, S.; Yu, M.: Constrained motion planning of free-float dual-arm space manipulator via deep reinforcement learning. Aerosp. Sci. Technol. 1(109), 106446 (2021)

    Google Scholar 

  34. Xu, W.; Liu, Y.; Liang, B.; Xu, Y.; Qiang, W.: Autonomous path planning and experiment study of free-floating space robot for target capturing. J. Intell. Robot. Syst. 51(3), 303–331 (2008)

    Google Scholar 

  35. Dalla, V.K.; Pathak, P.M.: Docking operation by multiple space robots for minimum attitude disturbance. Int. J. Model. Simul. 38(1), 38–49 (2018)

    Google Scholar 

  36. Hatta, N.M.; Zain, A.M.; Sallehuddin, R.; Shayfull, Z.; Yusoff, Y.: Recent studies on optimisation method of grey wolf optimiser (GWO): a review (2014–2017). Artif. Intell. Rev. 52(4), 2651–2683 (2019)

    Google Scholar 

  37. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 1(69), 46–61 (2014)

    Google Scholar 

  38. Gupta, S.; Deep, K.: A novel random walk grey wolf optimizer. Swarm Evol. Comput. 1(44), 101–112 (2019)

    Google Scholar 

  39. Gohil, B.N.; Patel, D.R.: An improved grey wolf optimizer (iGWO) for global engineering optimization. J. Comput. Theor. Nanosci. 17(1), 359–362 (2020)

    Google Scholar 

  40. Chen, X.; Qin, S.: Kinematic modeling for a class of free-floating space robots. IEEE Access. 29(5), 12389–12403 (2017)

    Google Scholar 

  41. Saramago, S.F.; Steffen, V.: Trajectory modeling of robot manipulators in the presence of obstacles. J. Optim. Theory Appl. 110(1), 17–34 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Cristofaro, A.; Salaris, P.; Pallottino, L.; Giannoni, F.; Bicchi, A.: On the minimum-time control problem for differential drive robots with bearing constraints. J. Optim. Theory Appl. 173(3), 967–993 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Saremi, S.; Mirjalili, S.Z.; Mirjalili, S.M.: Evolutionary population dynamics and grey wolf optimizer. Neural Comput. Appl. 26(5), 1257–1263 (2015)

    Google Scholar 

  44. Emary, E.; Zawbaa, H.M.; Grosan, C.; Hassenian, A.E.: Feature subset selection approach by gray-wolf optimization. In: Afro-European conference for industrial advancement, pp. 1–13. Springer, Cham (2015)

  45. Li, J.; Yang, F.: Task assignment strategy for multi-robot based on improved grey wolf optimizer. J. Ambient Intell. Humaniz. Comput. 11(12), 6319–6335 (2020)

    Google Scholar 

  46. Man, K.F.; Tang, K.S.; Kwong, S.: Genetic algorithms: concepts and applications [in engineering design]. IEEE Trans. Ind. Electron. 43(5), 519–534 (1996)

    Google Scholar 

Download references

Funding

This article author(s) received no financial assistance for its research, writing, or publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Shrivastava.

Ethics declarations

Conflict of interest

The authors state that they have no known conflicting financial interests or personal ties that may have impacted the work reported in this study.

Ethics Approval

The authors state that they do not have any conflicts of interest. The authors did not collect information from humans or animals. The data utilized in this study came from publicly available sources.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Appendix

Appendix

See Tables 3, 4, 5 and 6.

Table 3 Jerk estimation for various time intervals using linear segment polynomial blend (joint jerk)
Table 4 Jerk estimation for various time intervals using GA approach (joint jerk)
Table 5 Jerk estimation for various time intervals using GWO approach (joint jerk)
Table 6 The mean, maximum, and minimum jerk values for various time intervals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, A., Dalla, V.K. Jerk Optimized Motion Planning of Redundant Space Robot Based on Grey-Wolf Optimization Approach. Arab J Sci Eng 48, 2687–2699 (2023). https://doi.org/10.1007/s13369-022-07002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07002-1

Keywords

Navigation