Skip to main content
Log in

Deformation Characteristics for Subway Excavation in Soft Soil and Temperature Correction Method in Strut Force

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Corner effects significantly affect the deformation behavior of braced excavation, and the effect of temperature on the strut forces cannot be ignored in braced excavation. This paper studies the excavation deformation characteristics in soft soil and the temperature correction method of strut forces. The wall deformation characteristics and corner effects on the excavation deformations were studied. And the prediction model of plane strain ratio of braced excavation in soft soil was established. Further, the concept of temperature coefficient K was proposed to measure the temperature effect on the strut by the least square method. The prediction method of strut force considering different materials, depths, and types was proposed, and the correction formula excluding temperature effect was established. We found that corner effects existed in braced excavation at Dongle Road Station and the inflection point is mostly at the range of 1–6 m. The relationship between δhm normalized by H at Dongle Road Station is basically between δhm = 0.02%H and δhm = 0.3%H, and Hm falls between Hm = H − 5 and Hm = H  +  5. The maximum temperature effect on strut forces of braced excavation at Dongle Road Station is 8.3%, which is less than 10–20% of the code value. The proposed temperature correction method can effectively eliminate the temperature effect on strut force. The results help to eliminate the stress generated by the diurnal temperature difference on the strut and provide a reference for the design of braced excavation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(\delta_{p}\) :

Wall or soil displacement at the excavation corner (m)

\(\delta_{m}\) :

Wall or soil displacement at the excavation middle (m)

L :

Distance from the excavation edge (m)

H :

Excavation depth (m)

δ hm :

The maximum wall displacement (m)

H m :

Depth of the maximum displacement (m)

K :

Temperature coefficient (kN/℃)

t i :

Measured ambient temperature (℃)

P i :

Measured strut force (kN)

n :

The number of monitoring

\(\overline{t}\) :

Average temperature (℃)

\(\overline{P}\) :

Average strut force (kN)

\(\alpha\) :

Depth coefficient ((kN/℃)/m)

\(n^{\prime }\) :

The number of struts

h i :

Strut depth (m)

\(\overline{h}\) :

Average strut depth (m)

\(\overline{K}\) :

Average temperature coefficient (kN/℃)

K x :

Unknown temperature coefficient (kN/℃)

h x :

Unknown strut depth (m)

h :

Known strut depth (m)

P x :

Predicted strut forces (kN)

P i :

Strut force at the i-th measurement (kN)

P 0 :

Strut force at initial measurement (kN)

t i :

Ambient temperature near the strut at the i-th measurement (℃)

t 0 :

Ambient temperature at initial measurement (℃)

\(\beta\) :

Correction coefficient of K

P s :

Strut forces eliminating the temperature influence (kN)

P c :

Measured strut force (kN)

t c :

Measured ambient temperature (℃)

References

  1. Cheng, K.; Xu, R.; Ying, H.; Gan, X.; Zhang, L.; Liu, S.: Observed performance of a 302 m deep-large basement excavation in Hangzhou soft clay. Tunn. Undergr. Space Tech. 111, 103872 (2021). https://doi.org/10.1016/j.tust.2021.103872

    Article  Google Scholar 

  2. Zhang, R.; Goh, A.T.C.; Li, Y.; Hong, L.; Zhang, W.: Assessment of apparent earth pressure for braced excavations in anisotropic clay. Acta Geotech. 16(5), 1615–1626 (2021). https://doi.org/10.1007/s11440-020-01129-x

    Article  Google Scholar 

  3. Yi, S.; Chen, J.; Huang, J.; Li, J.; Qiu, Y.; You, W.: Investigation of surface settlement and wall deflection caused by braced excavation in spatially variable clays based on anisotropic random fields. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05853-8

    Article  Google Scholar 

  4. Chowdhury, S.S.; Deb, K.; Sengupta, A.: Estimation of design parameters for braced excavation: numerical study. Int. J. Geomech. 13(3), 234–247 (2013). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000207

    Article  Google Scholar 

  5. Li, Y.; Zhang, W.; Zhang, R.: Numerical investigation on performance of braced excavation considering soil stress-induced anisotropy. Acta Geotech. 17(2), 563–575 (2022). https://doi.org/10.1007/s11440-021-01171-3

    Article  Google Scholar 

  6. Liu, G.; Ng, C.W.; Wang, Z.: Observed performance of a deep multistrutted excavation in Shanghai soft clays. J. Geotech. Geoenviron. 131(8), 1004–1013 (2005). https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1004)

    Article  Google Scholar 

  7. Liu, L.L.; Wu, R.G.; Congress, S.S.C.; Du, Q.W.; Cai, G.J.; Li, Z.: Design optimization of the soil nail wall-retaining pile-anchor cable supporting system in a large-scale deep foundation pit. Acta Geotech. 16, 2251–2274 (2021). https://doi.org/10.1007/s11440-021-01154-4

    Article  Google Scholar 

  8. Arboleda-Monsalve, L.G.; Uribe-Henao, A.F.; Velasquez-Perez, A.; Zapata-Medina, D.G.; Sarabia, F.: Performance of urban cofferdams braced with segmental steel and reinforced concrete ring beams. J. Geotech. Geoenviron. 144(4), 04018015 (2018). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001864

    Article  Google Scholar 

  9. Yang, X.; Liu, G.: Performance of a large-scale metro interchange station excavation in Shanghai soft clay. J. Geotech. Geoenviron. 143(6), 05017003 (2017). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001681

    Article  Google Scholar 

  10. Arboleda-Monsalve, L.G.; Finno, R.J.: Influence of concrete time-dependent effects on the performance of top-down construction. J. Geotech. Geoenviron. 141(4), 04014120 (2015). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001260

    Article  Google Scholar 

  11. Blackburn, J.T.; Sylvester, K.; Finno, R.J.: Observed bracing responses at the ford design center excavation. In: Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering (2005), Osaka, Japan, pp. 1443–1446.

  12. Boone, S.; Crawford, A.: Braced excavations: Temperature, elastic modulus, and strut loads. J. Geotech. Geoenviron. 126(10), 870–881 (2000). https://doi.org/10.1061/(ASCE)1090-0241(2000)126:10(870)

    Article  Google Scholar 

  13. Batten, M.; Powrie, W.; Boorman, R.; Yu, H.T.; Leiper, Q.: Use of vibrating wire strain gauges to measure loads in tubular steel props supporting deep retaining walls. Proc. Inst. Civil Eng. Geotech. Eng. 137(1), 3–13 (1999). https://doi.org/10.1680/gt.1999.370102

    Article  Google Scholar 

  14. Richards, D.; Holmes, G.; Beadman, D.: Measurement of temporary prop loads at Mayfair car park. Proc. Inst. Civil Eng. Geotech. Eng. 137(3), 165–174 (1999). https://doi.org/10.1680/gt.1999.370305

    Article  Google Scholar 

  15. Chambers, P.; Augarde, C.; Reed, S.; Dobbins, A.: Temporary propping at Crossrail Paddington station. Geotech. Res. 3(1), 3–16 (2016). https://doi.org/10.1680/jgere.15.00009

    Article  Google Scholar 

  16. Di, H.; Guo, H.; Zhou, S.; Chen, J.; Wen, L.: Investigation of the axial force compensation and deformation control effect of servo steel struts in a deep foundation pit excavation in soft clay. Adv. Civ. Eng. (2019). https://doi.org/10.1155/2019/5476354

    Article  Google Scholar 

  17. Powrie, W.; Batten, M.: Comparison of measured and calculated temporary-prop loads at Canada Water Station. Géotechnique 50(2), 127–140 (2000). https://doi.org/10.1680/geot.2000.50.2.127

    Article  Google Scholar 

  18. Wang, F.; Shi, G.J.; Zhai, W.B.; Li, B.; Zhang, C.; Fang, H.Y.: Internal force on and deformation of steel assembled supporting structure of foundation pit under thermal stress. Appl. Sci. 11(5), 2225 (2021). https://doi.org/10.3390/app11052225

    Article  Google Scholar 

  19. Pakbaz, M.S.; Imanzadeh, S.; Bagherinia, K.H.: Characteristics of diaphragm wall lateral deformations and ground surface settlements: case study in Iran-Ahwaz metro. Tunn. Undergr. Space Tech. 35, 109–121 (2013). https://doi.org/10.1016/j.tust.2012.12.008

    Article  Google Scholar 

  20. Zeng, C.F.; Zheng, G.; Zhou, X.F.; Xue, X.L.; Zhou, H.Z.: Behaviours of wall and soil during pre-excavation dewatering under different foundation pit widths. Comput. Geotech. 115, 103169 (2019). https://doi.org/10.1016/j.compgeo.2019.103169

    Article  Google Scholar 

  21. Zhao, Y.D.; Shi, Y.; Liu, S.H.; Sun, R.: A successful sustainable engineering project of reutilizing existing row piles in deep foundation pit. Struct. Concrete. 22(3), 1256–1258 (2021). https://doi.org/10.1002/suco.202000355

    Article  Google Scholar 

  22. Tan, Y.; Li, M.: Measured performance of a 26 m deep top-down excavation in downtown Shanghai. Can. Geotech. J. 48(5), 704–719 (2011). https://doi.org/10.1139/t10-100

    Article  Google Scholar 

  23. Tan, Y.; Wang, D.: Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. I: Bottom-up construction of the central cylindrical shaft. J. Geotech. Geoenviron. 139(11), 1875–1893 (2013). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000928

    Article  Google Scholar 

  24. Tan, Y.; Zhu, H.H.; Peng, F.L.; Karlsrud, K.; Wei, B.: Characterization of semi-top-down excavation for subway station in Shanghai soft ground. Tunn. Undergr. Space Tech. 68, 244–261 (2017). https://doi.org/10.1016/j.tust.2017.05.028

    Article  Google Scholar 

  25. Wu, M.; Du, C.H.; Yang, K.; Geng, X.Y.; Liu, X.; Xia, T.D.: A new empirical approach to estimate temperature effects on strut loads in braced excavation. Tunn. Undergr. Space Tech. 94, 103115 (2019). https://doi.org/10.1016/j.tust.2019.103115

    Article  Google Scholar 

  26. Hashash, Y.M.A.; Marulanda, C.; Kershaw, K.A.; Cording, E.J.; Druss, D.L.; Bobrow, D.J.; Das, P.K.: Temperature correction and strut loads in central artery excavations. J. Geotech. Geoenviron. 129(6), 495–505 (2003). https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(495)

    Article  Google Scholar 

  27. Batten, M.; Powrie, W.; Boorman, R.; Yu, H.: Measurement of prop loads in a large braced excavation during construction of the JLE station at Canada Water, East London. In: International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, London, pp. 57–63 (1996)

  28. Sun, C.; Zhou, Y.S.: Impact of soil frost heave on supporting structures. In: Proceedings of the 2015 International Conference on Computer Science and Engineering Technology (Cset2015), Medical Science and Biological Engineering (Msbe2015), pp. 534–540 (2016). https://doi.org/10.1142/9789814651011_0076

  29. Jamsawang, P.; Jamnam, S.; Jongpradist, P.; Tanseng, P.; Horpibulsuk, S.: Numerical analysis of lateral movements and strut forces in deep cement mixing walls with top-down construction in soft clay. Comput. Geotech. 88, 174–181 (2017). https://doi.org/10.1016/j.compgeo.2017.03.018

    Article  Google Scholar 

  30. Li, Z.; Han, M.; Liu, L.L.; Li, Y.Y.; Yan, S.H.: Corner and partition wall effects on the settlement of a historical building near a supported subway excavation in soft soil. Comput. Geotech. 128, 103805 (2020). https://doi.org/10.1016/j.compgeo.2020.103805

    Article  Google Scholar 

  31. Finno, R.J.; Blackburn, J.T.; Roboski, J.F.: Three-dimensional effects for supported excavations in clay. J. Geotech. Geoenviron. 133(1), 30–36 (2007). https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(30)

    Article  Google Scholar 

  32. Clough, G.W.; O’Rourke, T.D.: Construction induced movements of in-situ walls. Geotechnical special publication: Design and performance of earth retaining structures (GSP 25), ASCE, Reston, VA, pp. 439–470 (1990).

  33. Peck, R.B.: Deep excavations and tunneling in soft ground. In: Proceedings of 7th ICSMFE 1969, pp. 225–281 (1969)

  34. Kung, G.T.; Juang, C.H.; Hsiao, E.C.; Hashash, Y.M.: Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays. J. Geotech. Geoenviron. 133(6), 731–747 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial and technical support provided by the National Key R&D Program of China (Grant No. 2018YFC1505302) and the Colleges and Universities in Jiangsu Province Plans to Graduate Research and Innovation (Grant No. KYCX19-0098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinqing Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Li, Z., Mei, G. et al. Deformation Characteristics for Subway Excavation in Soft Soil and Temperature Correction Method in Strut Force. Arab J Sci Eng 48, 4357–4380 (2023). https://doi.org/10.1007/s13369-022-06965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06965-5

Keywords

Navigation