Skip to main content
Log in

Synthesized of Zeolite@Ag2O Nanocomposite as Superb Stability Photocatalysis Toward Hazardous Rhodamine B Dye from Water

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Over the past years, Ag2O as an emerging photocatalyst has attracted extensive attention toward the removal of hazardous dye from aqueous media under visible light. However, Ag2O suffers from major drawbacks such as low stability under sunlight irradiation and high recombination rate of photogenerated electron–hole pairs. In this study, to resolve this problem, a novel nanocomposite-based zeolite clay was successfully prepared using an eco-friendly and economical approach. The nanocomposite Zeolite@Ag2O (Zeo@Ag2O) was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis Fourier transform infrared spectroscopy, Brunauer, Emmett, and Teller surface area method and UV–Vis diffuse reflectance spectroscopy. The obtained nanocomposite exhibited high photocatalytic efficiency for the removal of hazardous Rhodamine B dye from aqueous solution under visible light and the removal rate reached about 100%. Thus, the enhanced photocatalytic activity could be due to the better adsorption ability onto Zeo@Ag2O nanocomposite surface and the high effective separation of photogenerated electron–hole pairs. Also, the obtained results show that both holes (h +) and hydroxyl radicals (HO°) play an important role in RhB degradation over the synthesized nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Singh, A.; Kumar, S.; Panghal, V.; Arya, S.S.; Kumar, S. : Utilization of unwanted terrestrial weeds for removal of dyes. Rasayan J. Chem. 12, 1956–1963 (2019). https://doi.org/10.31788/RJC.2019.1245401

    Article  Google Scholar 

  2. Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C.: Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3, 275–290 (2019). https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  3. Akhouairi, S.; Ouachtak, H.; Addi, A.A.; Jada, A.; Douch, J.: Natural sawdust as adsorbent for the eriochrome black T dye removal from aqueous solution. Water. Air. Soil Pollut. (2019). https://doi.org/10.1007/s11270-019-4234-6

    Article  Google Scholar 

  4. Ouachtak, H.; Akhouairi, S.; Haounati, R.; Addi, A.A.; Jada, A.; Taha, M.L.; Douch, J.: 3,4-dihydroxybenzoic acid removal from water by goethite modified natural sand column fixed-bed: Experimental study and mathematical modeling. Desalin. Water Treat. 194, 439–449 (2020). https://doi.org/10.5004/dwt.2020.25562

    Article  Google Scholar 

  5. Largo, F.; Haounati, R.; Akhouairi, S.; Ouachtak, H.; El Haouti, R.; El Guerdaoui, A.; Hafid, N.; Santos, D.M.F.; Akbal, F.; Kuleyin, A.; Jada, A.; Addi, A.A.: Adsorptive removal of both cationic and anionic dyes by using sepiolite clay mineral as adsorbent: Experimental and molecular dynamic simulation studies. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.114247

    Article  Google Scholar 

  6. Samsami, S.; Mohamadi, M.; Sarrafzadeh, M.H.; Rene, E.R.; Firoozbahr, M.: Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process Saf. Environ. Prot. 143, 138–163 (2020). https://doi.org/10.1016/j.psep.2020.05.034

    Article  Google Scholar 

  7. Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I.: The utilization of leaf-based adsorbents for dyes removal: a review. J. Mol. Liq. 276, 728–747 (2019). https://doi.org/10.1016/j.molliq.2018.12.001

    Article  Google Scholar 

  8. Bharagava, R.N.; Chowdhary, P.: Emerging and eco-friendly approaches for waste management. Eco-Friendly Approaches Waste Manag, Emerg (2018) https://doi.org/10.1007/978-981-10-8669-4

    Book  Google Scholar 

  9. Aljeboree, A.M.; Alshirifi, A.N.; Alkaim, A.F.: Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab. J. Chem. 10, S3381–S3393 (2017). https://doi.org/10.1016/j.arabjc.2014.01.020

    Article  Google Scholar 

  10. Assila, O.; Zouheir, M.; Tanji, K.; Haounati, R.; Zerrouq, F.; Kherbeche, A.: Copper nickel co-impregnation of Moroccan yellow clay as promising catalysts for the catalytic wet peroxide oxidation of caffeine. Heliyon. 7, e06069 (2021)

    Article  Google Scholar 

  11. Haounati, R.; Ouachtak, H.; El Haouti, R.; Akhouairi, S.; Largo, F.; Akbal, F.; Benlhachemi, A.; Jada, A.; Addi, A.A.: Elaboration and properties of a new SDS/CTAB@Montmorillonite organoclay composite as a superb adsorbent for the removal of malachite green from aqueous solutions. Sep. Purif. Technol. 255, 117335 (2021). https://doi.org/10.1016/j.seppur.2020.117335

    Article  Google Scholar 

  12. Al-Abbad E., Alakhras F. (2020) Removal of dye acid red 1 from aqueous solutions using chitosan-iso-vanillin sorbent material Indones. J. Sci. Technol.; 5: 352–365. https://doi.org/10.17509/ijost.v5i3.24986

  13. El Haouti, R.; Ouachtak, H.; El Guerdaoui, A.; Amedlous, A.; Amaterz, E.; Haounati, R.; Addi, A.A.; Akbal, F.; El Alem, N.; Taha, M.L.: Cationic dyes adsorption by Na-Montmorillonite nano clay: experimental study combined with a theoretical investigation using DFT-based descriptors and molecular dynamics simulations. J. Mol. Liq. 290, 111139 (2019). https://doi.org/10.1016/j.molliq.2019.111139

    Article  Google Scholar 

  14. Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N.: Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 9, 105012 (2021). https://doi.org/10.1016/j.jece.2020.105012

    Article  Google Scholar 

  15. Gajanan, K.; Tijare, S.N.: Applications of nanomaterials. Mater. Today Proc. 5, 1093–1096 (2018). https://doi.org/10.1016/j.matpr.2017.11.187

    Article  Google Scholar 

  16. Saha, J.; Begum, A.; Mukherjee, A.; Kumar, S.: A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustain. Environ. Res. 27, 245–250 (2017). https://doi.org/10.1016/j.serj.2017.04.003

    Article  Google Scholar 

  17. Xue, H.; Wang, K.; Bai, Y.; He, F.; Yang, H.; Wang, F.; Liu, P.: Preparation of novel Ag 2 O/Na 3 Bi(PO 4) 2 heterogeneous nanostructures with enhanced visible-light responsive photocatalytic activity. Mater. Lett. 242, 39–41 (2019). https://doi.org/10.1016/j.matlet.2019.01.094

    Article  Google Scholar 

  18. Gusain, R.; Gupta, K.; Joshi, P.; Khatri, O.P.: Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv. Colloid Interface Sci. 272, 102009 (2019). https://doi.org/10.1016/j.cis.2019.102009

    Article  Google Scholar 

  19. Li, Y.; Wang, Q.; Wang, H.; Tian, J.; Cui, H.: Novel Ag2O nanoparticles modified MoS2 nanoflowers for piezoelectric-assisted full solar spectrum photocatalysis. J. Colloid Interface Sci. 537, 206–214 (2019). https://doi.org/10.1016/j.jcis.2018.11.013

    Article  Google Scholar 

  20. Abdel-Khalek, A.A.; Mahmoud, S.A.; Zaki, A.H.: Visible light assisted photocatalytic degradation of crystal violet, bromophenol blue and eosin Y dyes using AgBr-ZnO nanocomposite. Environ. Nanotechnol. Monit. Manag. 9, 164–173 (2018). https://doi.org/10.1016/j.enmm.2018.03.002

    Article  Google Scholar 

  21. Ouachtak, H.; El Haouti, R.; El Guerdaoui, A.; Haounati, R.; Amaterz, E.; Addi, A.A.; Akbal, F.; Taha, M.L.: Experimental and molecular dynamics simulation study on the adsorption of Rhodamine B dye on magnetic montmorillonite composite γ-Fe2O3@Mt. J. Mol. Liq. 309, 113142 (2020). https://doi.org/10.1016/j.molliq.2020.113142

    Article  Google Scholar 

  22. Haounati, R.; El Guerdaoui, A.; Ouachtak, H.; El Haouti, R.; Bouddouch, A.; Hafid, N.; Bakiz, B.; Santos, D.M.F.; Labd Taha, M.; Jada, A.; Ait Addi, A.: Design of direct Z-scheme superb magnetic nanocomposite photocatalyst Fe3O4/Ag3PO4@Sep for hazardous dye degradation. Sep. Purif. Technol. 277, 119399 (2021). https://doi.org/10.1016/j.seppur.2021.119399

    Article  Google Scholar 

  23. Mani, M.; Harikrishnan, R.; Purushothaman, P.; Pavithra, S.; Rajkumar, P.; Kumaresan, S.; Al Farraj, D.A.; Elshikh, M.S.; Balasubramanian, B.; Kaviyarasu, K.: Systematic green synthesis of silver oxide nanoparticles for antimicrobial activity. Environ. Res. 202, 111627 (2021). https://doi.org/10.1016/j.envres.2021.111627

    Article  Google Scholar 

  24. Brabazon, D.; Pellicer, E.; Zivic, F.; Sort, J.; Baró, M.D.; Grujovic, N.; Choy, K.L.: Commercialization of nanotechnologies-A case study approach. (2017)

  25. Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B.: Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C. 58, 36–43 (2016). https://doi.org/10.1016/j.msec.2015.08.018

    Article  Google Scholar 

  26. Wei, J.; Chen, Z.; Tong, Z.: Engineering Z-scheme silver oxide/bismuth tungstate heterostructure incorporated reduced graphene oxide with superior visible-light photocatalytic activity. J. Colloid Interface Sci. 596, 22–33 (2021). https://doi.org/10.1016/j.jcis.2021.03.117

    Article  Google Scholar 

  27. Shume, W.M.; Murthy, H.C.A.; Zereffa, E.A.: A review on synthesis and characterization of Ag2O nanoparticles for photocatalytic applications. J. Chem. (2020). https://doi.org/10.1155/2020/5039479

    Article  Google Scholar 

  28. Jiang, W.; Wang, X.; Wu, Z.; Yue, X.; Yuan, S.; Lu, H.; Liang, B.: Silver oxide as superb and stable photocatalyst under visible and near-infrared light irradiation and its photocatalytic mechanism. Ind. Eng. Chem. Res. 54, 832–841 (2015). https://doi.org/10.1021/ie503241k

    Article  Google Scholar 

  29. Alakhras, F.; Alhajri, E.; Haounati, R.; Ouachtak, H.; Addi, A.A.; Saleh, T.A.: A comparative study of photocatalytic degradation of Rhodamine B using natural-based zeolite composites. Surf. Interfaces. 20, 100611 (2020)

    Article  Google Scholar 

  30. Petronella, F.; Truppi, A.; Ingrosso, C.; Placido, T.; Striccoli, M.; Curri, M.L.; Agostiano, A.; Comparelli, R.: Nanocomposite materials for photocatalytic degradation of pollutants. Catal. Today. 281, 85–100 (2017). https://doi.org/10.1016/j.cattod.2016.05.048

    Article  Google Scholar 

  31. Isari, A.A.; Payan, A.; Fattahi, M.; Jorfi, S.; Kakavandi, B.: Photocatalytic degradation of Rhodamine B and Real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.08.133

    Article  Google Scholar 

  32. Inglezakis, V.J.; Satayeva, A.; Yagofarova, A.; Tauanov, Z.; Meiramkulova, K.; Farrando-Pérez, J.; Bear, J.C.: Surface interactions and mechanisms study on the removal of iodide from water by use of natural Zeolite-based silver nanocomposites. Nanomaterials 10, 1–23 (2020). https://doi.org/10.3390/nano10061156

    Article  Google Scholar 

  33. Reeve, P.J.; Fallowfield, H.J.: Natural and surfactant modified zeolites: a review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. J. Environ. Manage. 205, 253–261 (2018). https://doi.org/10.1016/j.jenvman.2017.09.077

    Article  Google Scholar 

  34. Wang, Z.; Tan, K.; Cai, J.; Hou, S.; Wang, Y.; Jiang, P.; Liang, M.: Silica oxide encapsulated natural zeolite for high efficiency removal of low concentration heavy metals in water. Colloids Surfaces A Physicochem. Eng. Asp. 561, 388–394 (2019). https://doi.org/10.1016/j.colsurfa.2018.10.065

    Article  Google Scholar 

  35. Ruíz-Baltazar, A.; Esparza, R.; Gonzalez, M.; Rosas, G.; Pérez, R.: Preparation and characterization of natural zeolite modified with iron nanoparticles. J. Nanomaterials 2015, 364763 (2015). https://doi.org/10.1155/2015/364763

    Article  Google Scholar 

  36. Ouachtak, H.; El Guerdaoui, A.; Haounati, R.; Akhouairi, S.; El Haouti, R.; Hafid, N.; Ait Addi, A.; Šljukić, B.; Santos, D.M.F.; Taha, M.L.: Highly efficient and fast batch adsorption of orange G dye from polluted water using superb organo-montmorillonite: experimental study and molecular dynamics investigation. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116560

    Article  Google Scholar 

  37. He, P.; Wang, W.; Du, L.; Dong, F.; Deng, Y.; Zhang, T.: Zeolite A functionalized with copper nanoparticles and graphene oxide for simultaneous electrochemical determination of dopamine and ascorbic acid. Anal. Chim. Acta. 739, 25–30 (2012). https://doi.org/10.1016/j.aca.2012.06.004

    Article  Google Scholar 

  38. Sing, K.S.W.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985). https://doi.org/10.1351/pac198557040603

    Article  Google Scholar 

  39. Kuila, U.; Prasad, M.: Specific surface area and pore-size distribution in clays and shales. Geophys. Prospect. 61, 341–362 (2013). https://doi.org/10.1111/1365-2478.12028

    Article  Google Scholar 

  40. Raja, K.; Saravanakumar, A.; Vijayakumar, R.: Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochim acta—part a mol. Biomol. Spectrosc. 97, 490–494 (2012). https://doi.org/10.1016/j.saa.2012.06.038

    Article  Google Scholar 

  41. Srirangam, G.M.; Parameswara Rao, K.: Synthesis and charcterization of silver nanoparticles from the leaf extract of Malachra capitata (L.). Rasayan J. Chem. 10, 46–53 (2017). https://doi.org/10.7324/RJC.2017.1011548

    Article  Google Scholar 

  42. Rosman, N.; Salleh, W.N.W.; Ismail, A.F.; Jaafar, J.; Harun, Z.; Aziz, F.; Mohamed, M.A.; Ohtani, B.; Takashima, M.: Photocatalytic degradation of phenol over visible light active ZnO/Ag2CO3/Ag2O nanocomposites heterojunction. J. Photochem. Photobiol. A Chem. 364, 602–612 (2018). https://doi.org/10.1016/j.jphotochem.2018.06.029

    Article  Google Scholar 

  43. Wen, X.J.; Niu, C.G.; Zhang, L.; Liang, C.; Zeng, G.M.: A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight. Appl. Catal. B Environ. 221, 701–714 (2018). https://doi.org/10.1016/j.apcatb.2017.09.060

    Article  Google Scholar 

  44. Kuzniatsova, T.; Kim, Y.; Shqau, K.; Dutta, P.K.; Verweij, H.: Zeta potential measurements of zeolite Y: application in homogeneous deposition of particle coatings. Microporous Mesoporous Mater. 103, 102–107 (2007). https://doi.org/10.1016/j.micromeso.2007.01.042

    Article  Google Scholar 

  45. Zhuang, J.; Dai, W.; Tian, Q.; Li, Z.; Xie, L.; Wang, J.; Liu, P.; Shi, X.; Wang, D.: Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location. Langmuir 26, 9686–9694 (2010). https://doi.org/10.1021/la100302m

    Article  Google Scholar 

  46. Kusior, A.; Michalec, K.; Jelen, P.; Radecka, M.: Shaped Fe 2 O 3 nanoparticles: synthesis and enhanced photocatalytic degradation towards RhB. Appl. Surf. Sci. 476, 342–352 (2019). https://doi.org/10.1016/j.apsusc.2018.12.113

    Article  Google Scholar 

  47. Bian, H.; Zhang, Z.; Xu, X.; Gao, Y.; Wang, T.: Photocatalytic activity of Ag/ZnO /AgO/TiO2 composite. Phys. E Low-Dimens. Syst. Nanostruct. (2020). https://doi.org/10.1016/j.physe.2020.114236

    Article  Google Scholar 

  48. Ahmed, M.A.; Al-Zaqri, N.; Alsalme, A.; Glal, A.H.; Esa, M.: Rapid photocatalytic degradation of RhB dye and photocatalytic hydrogen production on novel curcumin/SnO2 nanocomposites through direct Z-scheme mechanism. J. Mater. Sci. Mater. Electron. 31, 19188–19203 (2020). https://doi.org/10.1007/s10854-020-04455-8

    Article  Google Scholar 

  49. Jourshabani, M.; Shariatinia, Z.; Badiei, A.: Synthesis and characterization of novel Sm 2 O 3 /S-doped g-C 3 N 4 nanocomposites with enhanced photocatalytic activities under visible light irradiation. Appl. Surf. Sci. 427, 375–387 (2018). https://doi.org/10.1016/j.apsusc.2017.08.051

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to their institutions for providing facilities, support, and encouragement. This institutional collaboration is highly acknowledged.

Funding

No funding has been received for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by F. Alakhras, E. Alhajri, T.A. Saleh, and H. Ouachtak. The original draft preparation was written by R. Haounati, A. Jada, and F. Alakhras, whereas review and editing of the manuscript were done by G. Al-Mazaideh, N. Hafid, and A.A. Addi. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fadi Alakhras.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haounati, R., Alakhras, F., Ouachtak, H. et al. Synthesized of Zeolite@Ag2O Nanocomposite as Superb Stability Photocatalysis Toward Hazardous Rhodamine B Dye from Water. Arab J Sci Eng 48, 169–179 (2023). https://doi.org/10.1007/s13369-022-06899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06899-y

Keywords

Navigation