Skip to main content
Log in

Modulation Format Identification Using Supervised Learning and High-Dimensional Features

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The popular directions for automatic modulation classification algorithms investigate how to develop feature extraction methods for further signal classification. In this paper, we propose a mapping algorithm for a manually designed feature extraction method by using the reconstruction component of principal component analysis (PCA), which further extracts discrimination between signal features via a PCA reconstruction component. Two supervised neural network models are studied to achieve the limits of the learning matrix in modulation signal classification. Some experimental results show that different modulation schemes can be obviously classified using matrix mapping for feature extraction. Moreover, the modulation classification accuracy based on the mapping extraction feature, which has a lower SNR requirement for training, is slightly improved compared with some triradial deep learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Dobre, O.A.; Abdi, A.; Bar-Ness, Y.; Su, W.: Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun. 1, 137–156 (2007). https://doi.org/10.1049/iet-com:20050176

    Article  Google Scholar 

  2. Weber, C.; Peter, M.; Felhauer, T.: Automatic modulation classification technique for radio monitoring. Electron. Lett. 51, 794–796 (2015). https://doi.org/10.1049/el.2015.0610

    Article  Google Scholar 

  3. Kharbech, S.; Dayoub, I.; Zwingelstein-colin, M.; Simon, E.P.: On classifiers for blind feature-based automatic modulation classification over multiple-input–multiple-output channels. IET Commun. 10, 1–16 (2016). https://doi.org/10.1049/iet-com.2015.1124

    Article  Google Scholar 

  4. Sun, X.; Su, S.; Huang, Z.; Zuo, Z.; Guo, X.; Wei, J.: Blind modulation format identification using decision tree twin support vector machine in optical communication system. Opt. Commun. 438, 67–77 (2019). https://doi.org/10.1016/j.optcom.2019.01.025

    Article  Google Scholar 

  5. Zhou, L.; Sun, Z.; Wang, W.: Learning to short-time Fourier transform in spectrum sensing. Phys. Commun. 25, 420–425 (2017). https://doi.org/10.1016/j.phycom.2017.08.007

    Article  Google Scholar 

  6. Cheng, L.; Liu, J.: Automatic modulation classifier using artificial neural network trained by PSO algorithm. J. Commun. 8, 322–329 (2013). https://doi.org/10.12720/jcm.8.5.322-329

    Article  Google Scholar 

  7. El-Khamy S.E.; Elsayed H.A.; Rizk M.R.M.: Neural network for classification of multi-user chirp modulation signals using wavelet higher order statistics, Int. J. Emerg. Technol. Adv. Eng. 2 (2012).

  8. Ye, H.; Cao, F.; Wang, D.; Li, H.: Building feedforward neural networks with random weights for large scale datasets. Expert Syst. Appl. 106, 233–243 (2018). https://doi.org/10.1016/j.eswa.2018.04.007

    Article  Google Scholar 

  9. Mashor, M.Y.; Campus, P.B.: Some properties of RBF network with applications to system identification. Int. J. Comput. Eng. Manage. 7(1), 34–56 (1999)

    Google Scholar 

  10. Wei, W.; Mendel, J.M: Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Trans. Commun. 48(2), 189–193 (2000). https://doi.org/10.1109/26.823550

    Article  Google Scholar 

  11. Hameed, F.; Dobre, O.A.; Popescu, D.C.: On the likelihood-based approach to modulation classification. IEEE Trans. Wirel. Commun. 8, 5884–5892 (2009). https://doi.org/10.1109/TWC.2009.12.080883

    Article  Google Scholar 

  12. Han, L.; Gao, F.; Li, Z.; Dobre, O.A.: Low complexity automatic modulation classification based on order-statistics. IEEE Trans. Wirel. Commun. 16, 400–411 (2017). https://doi.org/10.1109/TWC.2016.2623716

    Article  Google Scholar 

  13. Aslam, M.W.; Zhu, Z.; Nandi, A.K.: Automatic modulation classification using combination of genetic programming and KNN. IEEE Trans. Wirel. Commun. 11(8), 2742–2750 (2012). https://doi.org/10.1109/TWC.2012.060412.110460

    Article  Google Scholar 

  14. Fontes, A.I.R.; De Martins, A.M.; Silveira, L.F.Q.; Principe, J.C.: Performance evaluation of the correntropy coefficient in automatic modulation classification. Expert Syst. Appl. 42, 1–8 (2015). https://doi.org/10.1016/j.eswa.2014.07.023

    Article  Google Scholar 

  15. Ali, A.K.; Erçelebi, E.: Algorithm for automatic recognition of PSK and QAM with unique classifier based on features and threshold levels. ISA Trans. (2020). https://doi.org/10.1016/j.isatra.2020.03.002

    Article  Google Scholar 

  16. Abdelmutalab, A.; Assaleh, K.; El-Tarhuni, M.: Automatic modulation classification based on high order cumulants and hierarchical polynomial classifiers. Phys. Commun. 21, 10–18 (2016). https://doi.org/10.1016/j.phycom.2016.08.001

    Article  Google Scholar 

  17. Zhou, L.: Man, H.: Wavelet cyclic feature based automatic modulation recognition using nonuniform compressive samples, In: 2013 IEEE 78th Veh. Technol. Conf. (VTC Fall), IEEE, Las Vegas, NV, USA, 2013: pp. 1–6. doi:https://doi.org/10.1109/VTCFall.2013.6692456.

  18. Ho, K.M.; Vaz, C.; Daut, D.G.: Automatic classification of amplitude, frequency, and phase shift keyed signals in the wavelet domain, In: IEEE Sarnoff Symp., pp. 1–6 (2010). doi:https://doi.org/10.1109/SARNOF.2010.5469784.

  19. Yuan, B.Y.; Zhao, P.; Wang, B.: Hybrid maximum likelihood modulation classification for continuous phase modulations. IEEE Commun. Lett. 20, 450–453 (2016). https://doi.org/10.1109/LCOMM.2016.2517007

    Article  Google Scholar 

  20. Ma, J.; Qiu, T.: Automatic modulation classification using cyclic correntropy spectrum in impulsive noise. Commun. Lett. 2337, 1–4 (2018). https://doi.org/10.1109/LWC.2018.2875001

    Article  Google Scholar 

  21. Calvo, R.A.; Partridge, M.; Jabri, M.A.: A comparative study of principal component analysis techniques, In: Proc. Ninth Aust. Conf. Neural Networks, Brisbane, QLD, 1998: pp. 276–281.

  22. Ebrahimzadeh, A.; Ghazalian, R.: Blind digital modulation classification in software radio using the optimized classifier and feature subset selection. Eng. Appl. Artif. Intell. 24, 50–59 (2011). https://doi.org/10.1016/j.engappai.2010.08.008

    Article  Google Scholar 

  23. De Vrieze; C.; Simić, L.; Mähönen, P.: The importance of being earnest: performance of modulation classification for real RF signals, 2018 IEEE Int. Symp. Dyn. Spectr. Access Networks, DySPAN 2018. (2019). doi:https://doi.org/10.1109/DySPAN.2018.8610499.

  24. Ali, A.K.; Erçelebi, E.: Automatic modulation recognition of DVB-S2X standard-specific with an APSK-based neural network classifier. Measurement 151, 244–257 (2019). https://doi.org/10.1016/j.measurement.2019.107257

    Article  Google Scholar 

  25. Alain, G.; Bengio, Y.: What regularized auto-encoders learn from the data-generating distribution guillaume, J. Mach. Learn. Res. 15, 3563–3593 (2014). doi:abs/1211.4246.

  26. Daldal, N.; Cömert, Z.; Polat, K.: Automatic determination of digital modulation types with different noises using convolutional neural network based on time–frequency information. Appl. Soft Comput. J. 86, 105834 (2020). https://doi.org/10.1016/j.asoc.2019.105834

    Article  Google Scholar 

  27. Daldal, N.; Yıldırım, Ö.; Polat, K.: Deep long short-term memory networks-based automatic recognition of six different digital modulation types under varying noise conditions. Neural Comput. Appl. 2, 1967–1981 (2019). https://doi.org/10.1007/s00521-019-04261-2

    Article  Google Scholar 

  28. Ting, F.F.; Tan, Y.J.; Sim, K.S.: Convolutional neural network improvement for breast cancer classification. Expert Syst. Appl. 120, 103–115 (2019). https://doi.org/10.1016/j.eswa.2018.11.008

    Article  Google Scholar 

  29. Zeng, Y.; Zhang, M.; Han, F.; Gong, Y.; Zhang, J.: Spectrum analysis and convolutional neural network for automatic modulation recognition. IEEE Wirel. Commun. Lett. 8, 929–932 (2019). https://doi.org/10.1109/LWC.2019.2900247

    Article  Google Scholar 

  30. Zhang, Q.; Xu, Z.; Zhang, P.: Modulation scheme recognition using convolutional neural network. J. Eng. 2019, 9075–9078 (2019). https://doi.org/10.1049/joe.2018.9188

    Article  Google Scholar 

  31. Zhang, Z.; Wang, C.; Gan, C.; Sun, S.; Wang, M.: Automatic modulation classification using convolutional neural network with features fusion of spwvd and bjd. IEEE Trans. Signal Inf. Process. Over Netw. 5, 469–478 (2019). https://doi.org/10.1109/TSIPN.2019.2900201

    Article  MathSciNet  Google Scholar 

  32. Ali, A.; Yangyu, F.: Unsupervised feature learning and automatic modulation classification using deep learning model. Phys. Commun. 25, 75–84 (2017). https://doi.org/10.1016/j.phycom.2017.09.004

    Article  Google Scholar 

  33. Ali, A.K.; Erçelebi, E.: Automatic modulation classification using different neural network and PCA combinations. Expert Syst. Appl. 178, 114931 (2021)

    Article  Google Scholar 

  34. Kuba, M.; Ronge, K.; Weigel, R.: Development and implementation of a feature-based automatic classification algorithm for communication standards in the 868 MHz band, GLOBECOM—IEEE Glob. Telecommun. Conf. 3104–3109 (2012). doi:https://doi.org/10.1109/GLOCOM.2012.6503591.

  35. Ali, A.; Ergun, E.: An M-QAM signal modulation recognition algorithm in AWGN-Channel, Sci. Program. (2019) 17. doi:https://doi.org/10.1155/2019/6752694.

  36. Hazza, A.; Shoaib, M.; Alshebeili, S.A.: Fahad, A.: An overview of feature-based methods for digital modulation classification, In: 1st Int. Conf. Commun. Signal Process. Their Appl., IEEE, Sharjah, United Arab Emirates, (2013) pp. 1–6. doi:https://doi.org/10.1109/ICCSPA.2013.6487244.

  37. Zhu, Z.; Nandi, A.K.: Blind digital modulation classification using minimum distance centroid estimator and non-parametric likelihood function. IEEE Trans. Wirel. Commun. 13, 4483–4494 (2014). https://doi.org/10.1109/TWC.2014.2320724

    Article  Google Scholar 

  38. Lau, K.; Salibian-barrera, M.; Lampe, L.: International Journal of Electronics and Communications (AEÜ) Modulation recognition in the 868 MHz band using classification trees and random forests, AEUE—Int. J. Electron. Commun. 1–8 (2016). doi:https://doi.org/10.1016/j.aeue.2016.07.001.

  39. Khan, M.A.; Bangash, Y.A.: Automatic modulation recognition of communication signals, (2013).

  40. Swami, A.; Sadler, B.M.: Hierarchical digital modulation classification using cumulants. IEEE Trans. Commun. 48, 416–429 (2000). https://doi.org/10.1109/26.837045

    Article  Google Scholar 

  41. Farhang, M.; Dehghani, H.; Bahramgiri, H.: Multi-receiver modulation classification for satellite communications signals. 2011 IEEE Int. Conf. Signal Image Process. Appl. ICSIPA 2011, 569–573 (2011). https://doi.org/10.1109/ICSIPA.2011.6144156

    Article  Google Scholar 

  42. Azarbad, M.; Hakimi, S.; Ebrahimzadeh, A.: Automatic recognition of digital communication signal. Int. J. Energy Inf. Commun. 3, 21–34 (2012)

    Google Scholar 

  43. Riedmiller, M.: Advanced supervised learning in multi-layer perceptrons—From backpropagation to adaptive learning algorithms, Comput. Stand. Interfaces 16. 16 (1994). doi:https://doi.org/10.1016/0920-5489(94)90017-5.

  44. O’Shea; T.J.; Roy, T.; Clancy, T.C.: Over-the-air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process. 12, 168–179 (2018). https://doi.org/10.1109/JSTSP.2018.2797022

    Article  Google Scholar 

  45. Zhang, M.; Yu, Z.; Wang, H.; Qin, H.; Zhao, W.; Liu, Y.: Automatic digital modulation classification based on curriculum learning. Appl. Sci. 9(10), 2171 (2019). https://doi.org/10.3390/app9102171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed K. Ali.

Appendix A

Appendix A

See Table

Table 12 Parameters of the multipath fading channel models

12

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.K., Erçelebi, E. Modulation Format Identification Using Supervised Learning and High-Dimensional Features. Arab J Sci Eng 48, 1461–1486 (2023). https://doi.org/10.1007/s13369-022-06887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06887-2

Keywords

Navigation